• International Journal of Extreme Manufacturing
  • Vol. 2, Issue 4, 42001 (2020)
Huaizhi Liu, Guanhua Zhang, Xin Zheng, Fengjun Chen, and Huigao Dua*
Author Affiliations
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/abba12 Cite this Article
    Huaizhi Liu, Guanhua Zhang, Xin Zheng, Fengjun Chen, Huigao Dua. Emerging miniaturized energy storage devices for microsystem applications: from design to integration[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 42001 Copy Citation Text show less
    References

    [1] Oudenhoven J F M, Baggetto L and Notten P H L 2011 All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts Adv. Energy Mater. 1 10–33

    [2] Koomey J G, Scott Matthews H and Williams E 2013 Smart everything: will intelligent systems reduce resource use? Annu. Rev. Environ. Resour. 38 311–43

    [3] Kyeremateng N A, Brousse T and Pech D 2017 Microsupercapacitors as miniaturized energy-storage components for on-chip electronics Nat. Nanotechnol. 12 7–15

    [4] Wang Z L 2012 Self-powered nanosensors and nanosystems Adv. Mater. 24 280–5

    [5] Wang Z L and Wu W Z 2012 Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems Angew. Chem., Int. Ed. 51 11700–21

    [6] Li Z, Zheng Q, Wang Z L and Li Z 2020 Nanogenerator-based self-powered sensors for wearable and implantable electronics Research 2020 8710686

    [7] Ding Y, Guo X L, Ramirez-Meyers K, Zhou Y G, Zhang L Y, Zhao F and Yu G H 2019 Simultaneous energy harvesting and storage via solar-driven regenerative electrochemical cycles Energy Environ. Sci. 12 3370–9

    [8] Zheng S H, Shi X Y, Das P, Wu Z S and Bao X H 2019 The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries Adv. Mater. 31 1900583

    [9] Pan X L, Hong X F, Xu L, Li Y X, Yan M Y and Mai L Q 2019 On-chip micro/nano devices for energy conversion and storage Nano Today 28 100764

    [10] Patnaik S G, Jadon A, Tran C C H, Est`eve A, Guay D and Pech D 2020 High areal capacity porous Sn-Au alloys with long cycle life for Li-ion microbatteries Sci. Rep. 10 10405

    [11] Dubal D P, Ayyad O, Ruiz V and G′omez-Romero P 2015 Hybrid energy storage: the merging of battery and supercapacitor chemistries Chem. Soc. Rev. 44 1777–90

    [12] Zhang P P, Wang F X, Yu M H, Zhuang X D and Feng X L 2018 Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems Chem. Soc. Rev. 47 7426–51

    [13] Dubal D P, Aradilla D, Bidan G, Gentile P, Schubert T J S, Wimberg J, Sadki S and Gomez-Romero P 2015 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid Sci. Rep. 5 9771

    [14] Liu L, Zhao H P and Lei Y 2019 Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review InfoMat 1 74–84

    [15] Zhang H X, Cao Y D, Chee M O L, Dong P, Ye M X and Shen J F 2019 Recent advances in micro-supercapacitors Nanoscale 11 5807–21

    [16] Asfaw H D, Kotronia A, Tai C W, Nyholm L and Edstr?m K 2019 Tailoring the microstructure and electrochemical performance of 3D microbattery electrodes based on carbon foams Energy Technol. 7 1900797

    [17] Zhang Y, Bai W Y, Cheng X L, Ren J, Weng W, Chen P N, Fang X, Zhang Z T and Peng H S 2014 Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs Angew. Chem., Int. Ed. 53 14564–8

    [18] Jia R, Shen G Z, Qu F Y and Chen D 2020 Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics Energy Storage Mater. 27 169–86

    [19] Huang P et al 2016 On-chip and freestanding elastic carbon films for micro-supercapacitors Science 351 691–5

    [20] Kim J, Kumar R, Bandodkar A J and Wang J 2017 Advanced materials for printed wearable electrochemical devices: a review Adv. Electron. Mater. 3 1600260

    [21] Liu W, Song M S, Kong B and Cui Y 2017 Flexible and stretchable energy storage: recent advances and future perspectives Adv. Mater. 29 1603436

    [22] Sumboja A, Liu J W, Zheng W G, Zong Y, Zhang H and Liu Z L 2018 Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design Chem. Soc. Rev. 47 5919–45

    [23] Sun G Q, Jin X T, Yang H S, Gao J and Qu L T 2018 An aqueous Zn–MnO2 rechargeable microbattery J. Mater. Chem. A 6 10926–31

    [24] Lu Y, Jiang K, Chen D and Shen G Z 2019 Wearable sweat monitoring system with integrated micro-supercapacitors Nano Energy 58 624–32

    [25] Da Y M, Liu J X, Zhou L, Zhu X H, Chen X D and Engineering F L 2019 2D architectures toward high-performance micro-supercapacitors Adv. Mater. 31 1802793

    [26] Wang S, Wu Z S, Zheng S H, Zhou F, Sun C L, Cheng H M and Bao X H 2017 Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities ACS Nano 11 4283–91

    [27] Choi K H, Yoo J T, Lee C K and Lee S Y 2016 All-inkjet-printed, solid-state flexible supercapacitors on paper Energy Environ. Sci. 9 2812–21

    [28] Wang Y S et al 2018 Stepwise-nanocavity-assisted transmissive color filter array microprints Research 2018 8109054

    [29] Ellis B L, Knauth P and Djenizian T 2014 Three-dimensional self-supported metal oxides for advanced energy storage Adv. Mater. 26 3368–97

    [30] Beidaghi M and Gogotsi Y 2014 Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors Energy Environ. Sci. 7 867–84

    [31] Ferrari S, Loveridge M, Beattie S D, Jahn M, Dashwood R J and Bhagat R 2015 Latest advances in the manufacturing of 3D rechargeable lithium microbatteries J. Power Sources 286 25–46

    [32] Liu L X, Weng Q H, Lu X Y, Sun X L, Zhang L and Schmidt O G 2017 Advances on microsized on-chip lithium-ion batteries Small 13 1701847

    [33] Liu Z Y, Wu Z S, Yang S, Dong R H, Feng X L and Müllen K 2016 Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene Adv. Mater. 28 2217–22

    [34] Ren J, Li L, Chen C, Chen X L, Cai Z B, Qiu L B, Wang Y G, Zhu X R and Peng H S 2013 Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery Adv. Mater. 25 1155–9

    [35] Shi X Y, Wu Z S, Qin J Q, Zheng S H, Wang S, Zhou F, Sun C L and Bao X H 2017 Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output Adv. Mater. 29 1703034

    [36] Zhang Q et al 2020 Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries Nano Energy 67 104212

    [37] Wang C L, Yu Y C, Niu J J, Liu Y X, Bridges D, Liu X Q, Pooran J, Zhang Y F and Hu A M 2019 Recent progress of metal-air batteries-a mini review Appl. Sci. 9 2787

    [38] Bitenc J, Lindahl N, Vizintin A, Abdelhamid M E, Dominko R and Johansson P 2020 Concept and electrochemical mechanism of an Al metal anode?organic cathode battery Energy Storage Mater. 24 379–83

    [39] Kim D J, Yoo D J, Otley M T, Prokofjevs A, Pezzato C, Owczarek M, Lee S J, Choi J W and Stoddart J F 2019 Rechargeable aluminium organic batteries Nat. Energy 4 51–59

    [40] Ni J F and Li L 2018 Self-supported 3D array electrodes for sodium microbatteries Adv. Funct. Mater. 28 1704880

    [41] Li H P and Liang J J 2020 Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives Adv. Mater. 32 1805864

    [42] Qi D P et al 2017 Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing Adv. Mater. 29 1702800

    [43] Zuo W H, Li R Z, Zhou C, Li Y Y, Xia J L and Liu J P 2017 Battery-supercapacitor hybrid devices: recent progress and future prospects Adv. Sci. 4 1600539

    [44] Qin J Q, Das P, Zheng S H and Wu Z S 2019 A perspective on two-dimensional materials for planar micro-supercapacitors APL Mater. 7 090902

    [45] Zhang Y Z, Wang Y, Cheng T, Yao L Q, Li X C, Lai W Y and Huang W 2019 Printed supercapacitors: materials, printing and applications Chem. Soc. Rev. 48 3229–64

    [46] Yue C, Li J and Lin L W 2017 Fabrication of Si-based three-dimensional microbatteries: a review Front. Mech. Eng. 12 459–76

    [47] Zhang G F, Han Y Y, Shao C X, Chen N, Sun G Q, Jin X T, Gao J, Ji B X, Yang H S and Qu L T 2018 Processing and manufacturing of graphene-based microsupercapacitors Mater. Chem. Front. 2 1750–64

    [48] Zhang L S, Liao M, Bao L K, Sun X M and Peng H S 2017 The functionalization of miniature energy-storage devices Small Methods 1 1700211

    [49] Koo M et al 2012 Bendable inorganic thin-film battery for fully flexible electronic systems Nano Lett. 12 4810–6

    [50] Zhang C F, Kremer M P, Seral-Ascaso A, Park S H, McEvoy N, Anasori B, Gogotsi Y and Nicolosi V 2018 Stamping of flexible, coplanar micro-supercapacitors using MXene Inks Adv. Funct. Mater. 28 1705506

    [51] Zheng S H, Wu Z S, Zhou F, Wang X, Ma J M, Liu C, He Y B and Bao X H 2018 All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance Nano Energy 51 613–20

    [52] Sollami Delekta S, Laurila M M, M¨antysalo M and Li J T 2020 Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors Nano-Micro Lett. 12 40

    [53] Wang K, Zhang X H, Han J W, Zhang X, Sun X Z, Li C, Liu W H, Li Q W and Ma Y W 2018 High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode ACS Appl. Mater. Interfaces 10 24573–82

    [54] Zhang Q C et al 2019 Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery Nano Lett. 19 4035–42

    [55] Zhang Q C et al 2017 Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density Nano Lett. 17 2719–26

    [56] Zhang Q C et al 2017 Constructing ultrahigh-capacity zinc–nickel–cobalt Oxide@Ni(OH)2 core–shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors Nano Lett. 17 7552–60

    [57] Zhu C, Liu T Y, Qian F, Han T Y J, Duoss E B, Kuntz J D, Spadaccini C M, Worsley M A and Li Y 2016 Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores Nano Lett. 16 3448–56

    [58] Wang Y, Zhang Y Z, Dubbink D and ten Elshof J E 2018 Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor Nano Energy 49 481–8

    [59] Abdelkader A M, Karim N, Vall′es C, Afroj S, Novoselov K S and Yeates S G 2017 Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications 2D Mater. 4 035016

    [60] Zhang Y, Lu B W, Wang T, Feng X and Xu H X 2019 A photochemical approach toward high-fidelity programmable transfer printing Adv. Mater. Technol. 4 1900163

    [61] Zhou F et al 2018 Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors J. Am. Chem. Soc. 140 8198–205

    [62] Chmiola J, Largeot C, Taberna P L, Simon P and Gogotsi Y 2010 Monolithic carbide-derived carbon films for micro-supercapacitors Science 328 480–3

    [63] Pu J, Shen Z H, Zhong C L, Zhou Q W, Liu J Y, Zhu J and Zhang H G 2020 Electrodeposition technologies for Li-based batteries: new frontiers of energy storage Adv. Mater. 32 1903808

    [64] Ye J L et al 2018 Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output Adv. Mater. 30 1801384

    [65] Guo B S, Sun J Y, Lu Y F and Jiang L 2019 Ultrafast dynamics observation during femtosecond laser-material interaction Int. J. Extreme Manuf. 1 032004

    [66] Dinh T M, Armstrong K, Guay D and Pech D 2014 High-resolution on-chip supercapacitors with ultra-high scan rate ability J. Mater. Chem. A 2 7170–4

    [67] Cirigliano N, Sun G Y, Membreno D, Malati P, Kim C J and Dunn B 2014 3D architectured anodes for lithium-ion microbatteries with large areal capacity Energy Technol. 2 362–9

    [68] Lai W, Erdonmez C K, Marinis T F, Bjune C K, Dudney N J, Xu F, Wartena R and Chiang Y M 2010 Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design Adv. Mater. 22 E139–44

    [69] Baggetto L, Niessen R A H and Roozeboom F 2008 Notten P H L. High energy density all-solid-state batteries: a challenging concept towards 3D integration Adv. Funct. Mater. 18 1057–66

    [70] Ning H L, Pikul J H, Zhang R Y, Li X J, Xu S, Wang J J, Rogers J A, King W P and Braun P V 2015 Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries Proc. Natl Acad. Sci. USA 112 6573–8

    [71] Deng J W, Lu X Y, Liu L X, Zhang L and Schmidt O G 2016 Introducing rolled-up nanotechnology for advanced energy storage devices Adv. Energy Mater. 6 1600797

    [72] Sun X L et al 2016 High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes J. Mater. Chem. A 4 10166–73

    [73] Li X L, Gu M, Hu S Y, Kennard R, Yan P F, Chen X L, Wang C M, Sailor M J, Zhang J G and Liu J 2014 Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes Nat. Commun. 5 4105

    [74] Yang Y, Zhu H, Xiao J F, Geng H B, Zhang Y F, Zhao J B, Li G, Wang X L, Li C C and Liu Q 2020 Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides Adv. Mater. 32 1905295

    [75] Lu L G, Han X B, Li J Q, Hua J F and Ouyang M G 2013 A review on the key issues for lithium-ion battery management in electric vehicles J. Power Sources 226 272–88

    [76] Li W H, Bradley L C and Watkins J J 2019 Copolymer solid-state electrolytes for 3D microbatteries via initiated chemical vapor deposition ACS Appl. Mater. Interfaces 11 5668–74

    [77] Crespilho F N, Sedenho G C, De Porcellinis D, Kerr E, Granados-Focil S, Gordon R G and Aziz M J 2019 Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules J. Mater. Chem. A 7 24784–7

    [78] Kanehori K, Matsumoto K, Miyauchi K and Kudo T 1983 Thin film solid electrolyte and its application to secondary lithium cell Solid State Ion. 9-10 1445–8

    [79] Moitzheim S, Put B and Vereecken P M 2019 Advances in 3D thin-film Li-Ion batteries Adv. Mater. Interfaces 6 1900805

    [80] Wang Y, Roller J and Maric R 2017 Direct dry synthesis of thin nanostructured LiNi0.8Co0.2O2 film for lithium ion micro-battery cathodes Electrochim. Acta 241 510–6

    [81] Sun C W, Liu J, Gong Y D, Wilkinson D P and Zhang J J 2017 Recent advances in all-solid-state rechargeable lithium batteries Nano Energy 33 363–86

    [82] Sun K, Wei T S, Ahn B Y, Seo J Y, Dillon S J and Lewis J A 2013 3D printing of interdigitated Li-ion microbattery architectures Adv. Mater. 25 4539–43

    [83] Wei T S, Ahn B Y, Grotto J and Lewis J A 2018 3D printing of customized Li-ion batteries with thick electrodes Adv. Mater. 30 1703027

    [84] Pikul J H, Zhang H G, Cho J, Braun P V and King W P 2013 High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes Nat. Commun. 4 1732

    [85] Li X R, Li H P, Fan X Q, Shi X L and Liang J J 2020 3D-printed stretchable micro-supercapacitor with remarkable areal performance Adv. Energy Mater. 10 1903794

    [86] Lin J, Zhang C G, Yan Z, Zhu Y, Peng Z W, Hauge R H, Natelson D and Tour J M 2013 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance Nano Lett. 13 72–78

    [87] Yang G R, Ilango P R, Wang S L, Nasir M S, Li L L, Ji D X, Hu Y X, Ramakrishna S, Yan W and Peng S J 2019 Sodium-Ion batteries: carbon-based alloy-type composite anode materials toward sodium-ion batteries (Small 22/2019) Small 15 1970115

    [88] Chen J W, Chua D H C and Lee P S 2020 The advances of metal sulfides and in situ characterization methods beyond Li Ion batteries: sodium, potassium, and aluminum ion batteries Small Methods 4 1900648

    [89] Uchaker E and Cao G Z 2015 The role of intentionally introduced defects on electrode materials for alkali-ion batteries Chem-Asian J. 10 1608–17

    [90] Ye M H, Hwang J Y and Sun Y K 2019 A 4 V class potassium metal battery with extremely low overpotential ACS Nano 13 9306–14

    [91] Li C C, Wang B, Chen D, Gan L Y, Feng Y Z, Zhang Y F, Yang Y, Geng H B, Rui X H and Yu Y 2020 Topotactic transformation synthesis of 2D ultrathin GeS2 nanosheets toward high-rate and high-energy-density sodium-ion half/full batteries ACS Nano 14 531–40

    [92] Zhong S Y, Liu H Z, Wei D H, Hu J, Zhang H, Hou H S, Peng M X, Zhang G H and Duan H G 2020 Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries Chem. Eng. J. 395 125054

    [93] Nightingale E R Jr 1959 Phenomenological theory of ion solvation. effective radii of hydrated ions J. Phys. Chem. 63 1381–7

    [94] Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K and Gopinadhan K 2017 Size effect in ion transport through angstrom-scale slits Science 358 511–3

    [95] Li Y Q, Shi H, Wang S B, Zhou Y T, Wen Z, Lang X Y and Jiang Q 2019 Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries Nat. Commun. 10 4292

    [96] Zheng S H, Huang H J, Dong Y F, Wang S, Zhou F, Qin J Q, Sun C L, Yu Y, Wu Z S and Bao X H 2020 Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability Energy Environ. Sci. 13 821–9

    [97] Lu Y, Li L, Zhang Q, Niu Z Q and Chen J 2018 Electrolyte and interface engineering for solid-state sodium batteries Joule 2 1747–70

    [98] Ponrouch A, Monti D, Boschin A, Steen B, Johansson P and Palacín M R 2015 Non-aqueous electrolytes for sodium-ion batteries J. Mater. Chem. A 3 22–42

    [99] Zhong S Y, Zhang H, Fu J C, Shi H M, Wang L, Zeng W, Liu Q H, Zhang G H and Duan H G 2018 In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries ChemElectroChem 5 1708–16

    [100] Zhang G H, Hou S C, Zhang H, Zeng W, Yan F L, Li C C and Duan H G 2015 High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode Adv. Mater. 27 2400–5

    [101] Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M and Jiang H Q 2018 Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates Nat. Energy 3 227–35

    [102] Song M, Tan H, Chao D L and Fan H J 2018 Recent advances in Zn-Ion batteries Adv. Funct. Mater. 28 1802564

    [103] Lin M C et al 2015 An ultrafast rechargeable aluminium-ion battery Nature 520 324–8

    [104] Xu C J, Li B H, Du H D and Kang F Y 2012 Energetic zinc ion chemistry: the rechargeable zinc ion battery Angew. Chem., Int. Ed. 51 933–5

    [105] Zeng Y X, Zhang X Y, Meng Y, Yu M H, Yi J N, Wu Y Q, Lu X H and Tong Y X 2017 Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery Adv. Mater. 29 1700274

    [106] Kundu D, Adams B D, Duffort V, Vajargah S H and Nazar L F 2016 A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode Nat. Energy 1 16119

    [107] Liu S C, Zhu H, Zhang B H, Li G, Zhu H K, Ren Y, Geng H B, Yang Y, Liu Q and Li C C 2020 Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance Adv. Mater. 32 2001113

    [108] Geng H B, Cheng M, Wang B, Yang Y, Zhang Y F and Li C C 2020 Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries Adv. Funct. Mater. 30 1907684

    [109] Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W and Rolison D R 2017 Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion Science 356 415–8

    [110] He B et al 2018 High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors J. Mater. Chem. A 6 14594–601

    [111] Chen S F, Zhang Y F, Geng H B, Yang Y, Rui X H and Li C C 2019 Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries J. Power Sources 441 227192

    [112] Liu M M, Pu X, Cong Z F, Liu Z X, Liu T, Chen Y H, Fu J Q, Hu W G and Wang Z L 2019 Resist-dyed textile alkaline Zn microbatteries with significantly suppressed zn dendrite growth ACS Appl. Mater. Interfaces 11 5095–106

    [113] Hao Z M, Xu L, Liu Q, Yang W, Liao X B, Meng J S, Hong X F, He L and Mai L Q 2019 On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics Adv. Funct. Mater. 29 1808470

    [114] Wei Q L, An Q Y, Chen D D, Mai L Q, Chen S Y, Zhao Y L, Hercule K M, Xu L, Minhas-Khan A and Zhang Q J 2014 One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries Nano Lett. 14 1042–8

    [115] Chen Y M, Li X Y, Park K, Song J, Hong J H, Zhou L M, Mai Y W, Huang H T and Goodenough J B 2013 Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-Ion batteries J. Am. Chem. Soc. 135 16280–3

    [116] Zhou G M, Li F and Cheng H M 2014 Progress in flexible lithium batteries and future prospects Energy Environ. Sci. 7 1307–38

    [117] Wang X F, Lu X H, Liu B, Chen D, Tong Y X and Shen G Z 2014 Flexible energy-storage devices: design consideration and recent progress Adv. Mater. 26 4763–82

    [118] Zhang C J, Zhu J X, Lin H J and Huang W 2018 Fiber batteries: flexible fiber and fabric batteries (Adv. Mater. Technol. 10/2018) Adv. Mater. Technol. 3 1870038

    [119] Chen D, Jiang K, Huang T and Shen G Z 2020 Recent advances in fiber supercapacitors: materials, device configurations, and applications Adv. Mater. 32 1901806

    [120] Huang Y, Zhu M S, Huang Y, Li H F, Pei Z X, Xue Q, Liao Z, Wang Z F and Zhi C Y 2016 A modularization approach for linear-shaped functional supercapacitors J. Mater. Chem. A 4 4580–6

    [121] Li H F et al 2018 Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte ACS Nano 12 3140–8

    [122] Huang Y, Zhong M, Shi F K, Liu X Y, Tang Z J, Wang Y K, Huang Y, Hou H Q, Xie X M and Zhi C Y 2017 An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte Angew. Chem., Int. Ed. 56 9141–5

    [123] Xu Y F, Zhang Y, Guo Z Y, Ren J, Wang Y G and Peng H S 2015 Flexible, stretchable, and rechargeable fiber-shaped zinc–air battery based on cross-stacked carbon nanotube sheets Angew. Chem., Int. Ed. 54 15390–4

    [124] Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y and Wong C P 2014 Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor Energy Environ. Sci. 7 2652–9

    [125] Simon P and Gogotsi Y 2008 Materials for electrochemical capacitors Nat. Mater. 7 845–54

    [126] Wang L, Zhang G H, Zhang X J, Shi H M, Zeng W, Zhang H, Liu Q, Li C C, Liu Q H and Duan H G 2017 Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors J. Mater. Chem. A 5 14801–10

    [127] Bose S, Kuila T, Mishra A K, Rajasekar R, Kim N H and Lee J H 2012 Carbon-based nanostructured materials and their composites as supercapacitor electrodes J. Mater. Chem. 22 767–84

    [128] Augustyn V, Simon P and Dunn B 2014 Pseudocapacitive oxide materials for high-rate electrochemical energy storage Energy Environ. Sci. 7 1597–614

    [129] Wang L, Liu H Z, Zhao J G, Zhang X J, Zhang C Z, Zhang G H, Liu Q H and Duan H G 2020 Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors Chem. Eng. J. 382 122979

    [130] Tang Z Y, Zhang G H, Zhang H, Wang L, Shi H M, Wei D H and Duan H G 2018 MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors Energy Storage Mater. 10 75–84

    [131] Zhang X J, Wang L, Wei Z X, Zhang G H, Zeng W, Fu J C, Liu Q H and Duan H G 2018 Ultra-stable asymmetric supercapacitors constructed by in-situ electro-oxidation activated Ni@CNTs composites ChemElectroChem 5 3213–21

    [132] Li R Z, Zhou Y P, Li W B, Zhu J X and Huang W 2020 Structure engineering in biomass-derived carbon materials for electrochemical energy storage Research 2020 8685436

    [133] Li Y et al 2019 Manganese-doped nickel molybdate nanostructures for high-performance asymmetric supercapacitors Chem. Eng. J. 372 452–61

    [134] Boota M, Anasori B, Voigt C, Zhao M Q, Barsoum M W and Gogotsi Y 2016 Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene) Adv. Mater. 28 1517–22

    [135] Peng Y Y, Akuzum B, Kurra N, Zhao M Q, Alhabeb M, Anasori B, Kumbur E C, Alshareef H N, Ger M D and Gogotsi Y 2016 All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage Energy Environ. Sci. 9 2847–54

    [136] Schütter C, Pohlmann S and Balducci A 2019 Industrial requirements of materials for electrical double layer capacitors: impact on current and future applications Adv. Energy Mater. 9 1900334

    [137] Qi D P, Liu Y, Liu Z Y, Zhang L and Chen X D 2017 Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges Adv. Mater. 29 1602802

    [138] Du W C, Geng H B, Yang Y, Zhang Y F, Rui X H and Li C L 2019 Pristine graphene for advanced electrochemical energy applications J. Power Sources 437 226899

    [139] In J B, Hsia B, Yoo J H, Hyun S, Carraro C, Maboudian R and Grigoropoulos C P 2015 Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide Carbon 83 144–51

    [140] Pech D, Brunet M, Taberna P L, Simon P, Fabre N, Mesnilgrente F, Con′ed′era V and Durou H 2010 Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor J. Power Sources 195 1266–9

    [141] Kim S K, Koo H J, Lee A and Braun P V 2014 Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors Adv. Mater. 26 5108–12

    [142] Li Z, Song B, Wu Z K, Lin Z Y, Yao Y G, Moon K S and Wong C P 2015 3D porous graphene with ultrahigh surface area for microscale capacitive deionization Nano Energy 11 711–8

    [143] Babbitt C W and Moore E A 2018 Sustainable nanomaterials by design Nat. Nanotechnol. 13 621–3

    [144] Zhao J X et al 2019 Fiber-shaped electrochemical capacitors based on plasma-engraved graphene fibers with oxygen vacancies for alternating current line filtering performance ACS Appl. Energy Mater. 2 993–9

    [145] Huang P H, Heon M, Pech D, Brunet M, Taberna P L, Gogotsi Y, Lofland S, Hettinger J D and Simon P 2013 Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips J. Power Sources 225 240–4

    [146] Liu H J, Wang J, Wang C X and Xia Y Y 2011 Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor Adv. Energy Mater. 1 1101–8

    [147] Beidaghi M, Chen W and Wang C L 2011 Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors J. Power Sources 196 2403–9

    [148] Wang S, Hsia B, Carraro C and Maboudian R 2014 High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte J. Mater. Chem. A 2 7997–8002

    [149] Chen C J, Zhang Y, Li Y J, Dai J Q, Song J W, Yao Y G, Gong Y H, Kierzewski I, Xie J and Hu L B 2017 All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance Energy Environ. Sci. 10 538–45

    [150] Pech D, Brunet M, Durou H, Huang P H, Mochalin V, Gogotsi Y, Taberna P L and Simon P 2010 Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon Nat. Nanotechnol. 5 651–4

    [151] El-Kady M F and Kaner R B 2013 Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage Nat. Commun. 4 1475

    [152] Zheng S H, Tang X Y, Wu Z S, Tan Y Z, Wang S, Sun C L, Cheng H M and Bao X H 2017 Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration ACS Nano 11 2171–9

    [153] Du J W, Mu X M, Zhao Y R, Zhang Y X, Zhang S M, Huang B Y, Sheng Y Z, Xie Y Z, Zhang Z X and Xie E Q 2019 Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors Nanoscale 11 14392–9

    [154] Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S and Zboril R 2016 Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications Chem. Rev. 116 5464–519

    [155] Wang S T, Yu Y C, Luo S, Cheng X P, Feng G Y, Zhang Y F, Wu Z L, Compagnini G, Pooran J and Hu A M 2019 All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing Appl. Phys. Lett. 115 083904

    [156] Wang S T, Yu Y C, Li R Z, Feng G Y, Wu Z L, Compagnini G, Gulino A, Feng Z L and Hu A M 2017 High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets Electrochim. Acta 241 153–61

    [157] Nathan-Walleser T, Lazar I M, Fabritius M, T?lle F J, Xia Q, Bruchmann B, Venkataraman S S, Schwab M G and Mülhaupt R 2014 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors Adv. Funct. Mater. 24 4706–16

    [158] Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 The chemistry of graphene oxide Chem. Soc. Rev. 39 228–40

    [159] Rangom Y, Tang X W and Nazar L F 2015 Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance ACS Nano 9 7248–55

    [160] Wang X F, Liu B, Liu R, Wang Q F, Hou X J, Chen D, Wang R M and Shen G Z 2014 Fiber-Based Flexible All-Solid-State Asymmetric Supercapacitors for Integrated Photodetecting System Angew. Chem., Int. Ed. 53 1849–53

    [161] Wu Z S, Parvez K, Li S, Yang S, Liu Z Y, Liu S H, Feng X L and Müllen K 2015 Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors Adv. Mater. 27 4054–61

    [162] Hu Z M et al 2017 Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method Nat. Commun. 8 15630

    [163] Jiang Q, Kurra N, Xia C and Alshareef H N 2017 Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy Adv. Energy Mater. 7 1601257

    [164] Wang K, Zou W J, Quan B G, Yu A F, Wu H P, Jiang P and Wei Z X 2011 An all-solid-state flexible micro-supercapacitor on a chip Adv. Energy Mater. 1 1068–72

    [165] Hu H B and Hua T 2017 An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors J. Mater. Chem. A 5 19639–48

    [166] Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A L, Zhou Z H, Cho H, Gogotsi Y and Yang S 2018 Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes Nature 557 409–12

    [167] Li L, Lou Z, Han W and Shen G Z 2016 Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications Nanoscale 8 14986–91

    [168] Qin J Q, Wang S, Zhou F, Das P, Zheng S H, Sun C L, Bao X H and Wu Z S 2019 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte Energy Storage Mater. 18 397–404

    [169] Mu X M, Du J W, Zhang Y X, Liang Z L, Wang H, Huang B Y, Zhou J Y, Pan X J, Zhang Z X and Xie E Q 2017 Construction of hierarchical CNT/rGO-supported MnMoO4 nanosheets on Ni foam for high-performance aqueous hybrid supercapacitors ACS Appl. Mater. Interfaces 9 35775–84

    [170] Zhang Y X et al 2019 Versatile electrochemical activation strategy for high-performance supercapacitor in a model of MnO2 J. Mater. Chem. A 7 21290–8

    [171] Zhao H W, Zhu Y J, Li F S, Hao R, Wang S X and Guo L 2017 A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets Angew. Chem., Int. Ed. 56 8766–70

    [172] Liu S H, Zhang J, Dong R H, Gordiichuk P, Zhang T, Zhuang X D, Mai Y Y, Liu F, Herrmann A and Feng X L 2016 Two-dimensional mesoscale-ordered conducting polymers Angew. Chem., Int. Ed. 55 12516–21

    [173] Zheng S H, Lei W W, Qin J Q, Wu Z S, Zhou F, Wang S, Shi X Y, Sun C L, Chen Y and Bao X H 2018 All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator Energy Storage Mater. 10 24–31

    [174] Liu Z H, Tian X C, Xu X, He L, Yan M Y, Han C H, Li Y, Yang W and Mai L Q 2017 Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors Nano Res. 10 2471–81

    [175] Yue Y et al 2016 A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil ACS Nano 10 11249–57

    [176] Mahmoudzadeh Andwari A, Pesiridis A, Rajoo S, Martinez-Botas R and Esfahanian V 2017 A review of battery electric vehicle technology and readiness levels Renew. Sustain. Energy Rev. 78 414–30

    [177] Wang L, Zhang G H, Liu Q H and Duan H G 2018 Recent progress in Zn-based anodes for advanced lithium ion batteries Mater. Chem. Front. 2 1414–35

    [178] Carter R, Cruden A and Hall P J 2012 Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle IEEE Trans. Veh. Technol. 61 1526–33

    [179] Conway B E and Pell W G 2003 Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices J. Solid State Electrochem. 7 637–44

    [180] Winter M and Brodd R J 2004 What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 4245–70

    [181] Gu F, Guo J F, Yao X, Summers P A, Widijatmoko S D and Hall P 2017 An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China J. Clean. Prod. 161 765–80

    [182] Ding J, Hu W B, Paek E and Mitlin D 2018 Review of hybrid ion capacitors: from aqueous to lithium to sodium Chem. Rev. 118 6457–98

    [183] Sikha G and Popov B N 2004 Performance optimization of a battery-capacitor hybrid system J. Power Sources 134 130–8

    [184] Hannan M A, Lipu M S H, Hussain A and Mohamed A 2017 A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations Renew. Sustain. Energy Rev. 78 834–54

    [185] Scrosati B 2005 Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells Chem. Rec. 5 286–97

    [186] Amatucci G G 2001 Rechargeable hybrid battery/ supercapacitor system US Patent 6252762 (https://doi.org/10.7282/T34T6MSN)

    [187] Amatucci G G, Badway F, Du Pasquier A and Zheng T 2001 An asymmetric hybrid nonaqueous energy storage cell J. Electrochem. Soc. 148 A930

    [188] Zheng S H, Ma J M, Wu Z S, Zhou F, He Y B, Kang F Y, Cheng H M and Bao X H 2018 All-solid-state flexible planar lithium ion micro-capacitors Energy Environ. Sci. 11 2001–9

    [189] Zhang P P, Wang L L, Wang F X, Tan D M, Wang G, Yang S, Yu M H, Zhang J, Feng X L and Nonaqueous Na-Ion A 2019 Hybrid micro-supercapacitor with wide potential window and ultrahigh areal energy density Batter. Super. 2 918–23

    [190] Li W H, Zeng L C, Wu Y and Yu Y 2016 Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning Sci. China Mater. 59 287–321

    [191] Chayambuka K, Mulder G, Danilov D L and Notten P H L 2018 Sodium-ion battery materials and electrochemical properties reviewed Adv. Energy Mater. 8 1800079

    [192] Cui C, Wei Z X, Zhou G, Wei W F, Ma J M, Chen L B and Li C C 2018 Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries J. Mater. Chem. A 6 7088–98

    [193] Ji Q Q et al 2017 Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications Nano Lett. 17 4908–16

    [194] Wang X P, Gao J, Cheng Z H, Chen N and Qu L T 2016 A responsive battery with controlled energy release Angew. Chem., Int. Ed. 55 14643–7

    [195] Ye M H, Gao J, Xiao Y K, Xu T, Zhao Y and Qu L T 2017 Metal/graphene oxide batteries Carbon 125 299–307

    [196] Wang H, Wang M and Tang Y B 2018 A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications Energy Storage Mater. 13 1–7

    [197] Liu Z, Li G Z, Cui T, Borodin A, Kuhl C and Endres F 2018 A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite J. Solid State Electrochem. 22 91–101

    [198] Zhang P P, Li Y, Wang G, Wang F X, Yang S, Zhu F, Zhuang X D, Schmidt O G and Feng X L 2019 Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability Adv. Mater. 31 1806005

    [199] Sun G Q, Yang H S, Zhang G F, Gao J, Jin X T, Zhao Y, Jiang L and Qu L T 2018 A capacity recoverable zinc-ion micro-supercapacitor Energy Environ. Sci. 11 3367–74

    [200] Dong L B, Ma X P, Li Y, Zhao L, Liu W B, Cheng J Y, Xu C J, Li B H, Yang Q H and Kang F Y 2018 Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors Energy Storage Mater. 13 96–102

    [201] Chen Z et al 2016 Fast and reversible thermoresponsive polymer switching materials for safer batteries Nat. Energy 1 15009

    [202] Kim D et al 2016 Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices Adv. Mater. 28 748–56

    [203] Sun H, Yang Z B, Chen X L, Qiu L B, You X, Chen P N and Peng H S 2013 Photovoltaic wire with high efficiency attached onto and detached from a substrate using a magnetic field Angew. Chem., Int. Ed. 52 8276–80

    [204] Huang Y, Zhu M S, Huang Y, Pei Z X, Li H F, Wang Z F, Xue Q and Zhi C Y 2016 Multifunctional energy storage and conversion devices Adv. Mater. 28 8344–64

    [205] Zhang P P, Zhu F, Wang F X, Wang J H, Dong R H, Zhuang X D, Schmidt O G and Feng X L 2017 Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window Adv. Mater. 29 1604491

    [206] Jiang Q, Wu C S, Wang Z J, Wang A C, He J H, Wang Z L and Alshareef H N 2018 MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit Nano Energy 45 266–72

    [207] Zhang X Y, Zhao W, Wei L, Jin Y Y, Hou J, Wang X X and Guo X 2019 In-plane flexible solid-state microsupercapacitors for on-chip electronics Energy 170 338–48

    [208] Kim J S, Ko D, Yoo D J, Jung D S, Yavuz C T, Kim N I, Choi I S, Song J Y and Choi J W 2015 A half millimeter thick coplanar flexible battery with wireless recharging capability Nano Lett. 15 2350–7

    [209] Yun J et al 2018 Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor Nano Energy 49 644–54

    [210] Song Y, Wang H B, Cheng X L, Li G K, Chen X X, Chen H T, Miao L M, Zhang X S and Zhang H X 2019 High-efficiency self-charging smart bracelet for portable electronics Nano Energy 55 29–36

    [211] Nasreldin M, Delattre R, Ramuz M, Lahuec C and Djenizian T 2019 de Bougrenet de la Tocnaye J L. Flexible micro-battery for powering smart contact lens Sensors 19 2062

    [212] Lin Y J, Chen J Q, Tavakoli M M, Gao Y, Zhu Y D, Zhang D Q, Kam M, He Z B and Fan Z Y 2019 Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates Adv. Mater. 31 1804285

    [213] Qiu M J, Sun P, Cui G F, Tong Y X and Mai W J 2019 A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging ACS Nano 13 8246–55

    [214] Zhu M S, Wang Z G, Li H F, Xiong Y, Liu Z X, Tang Z J, Huang Y, Rogach A L and Zhi C Y 2018 Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen Energy Environ. Sci. 11 2414–22

    [215] Wang Y X, Li Q Y, Cartmell S, Li H D, Mendoza S, Zhang J G, Deng Z D and Xiao J 2018 Fundamental understanding and rational design of high energy structural microbatteries Nano Energy 43 310–6

    [216] Guo R S, Chen J T, Yang B J, Liu L Y, Su L J, Shen B S and Yan X B 2017 In-plane micro-supercapacitors for an integrated device on one piece of paper Adv. Funct. Mater. 27 1702394

    [217] Dai S G et al 2019 In situ Raman study of nickel bicarbonate for high-performance energy storage device Nano Energy 64 103919

    [218] Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S and Ji X B 2020 H+-insertion boosted α-MnO2 for an aqueous Zn-Ion battery Small 16 1905842

    [219] Li Y, Cheng X, Zhang Y and Zhao K 2019 Recent advance in understanding the electro-chemo-mechanical behavior of lithium-ion batteries by electron microscopy Mater. Today Nano 7 100040

    [220] Blanc F, Leskes M and Grey C P 2013 In situ solid-state nmr spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells Acc. Chem. Res. 46 1952–63

    Huaizhi Liu, Guanhua Zhang, Xin Zheng, Fengjun Chen, Huigao Dua. Emerging miniaturized energy storage devices for microsystem applications: from design to integration[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 42001
    Download Citation