• Nano-Micro Letters
  • Vol. 17, Issue 1, 034 (2025)
Mingyuan Sun1, Shuai Wang1, Yanbo Liang1, Chao Wang1..., Yunhong Zhang1, Hong Liu2, Yu Zhang1,* and Lin Han1,3,4,**|Show fewer author(s)
Author Affiliations
  • 1Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 Shandong, People’s Republic of China
  • 2State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 Shandong, People’s Republic of China
  • 3School of Integrated Circuits, Shandong University, Jinan, 250100 Shandong, People’s Republic of China
  • 4Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100 Shandong, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01534-x Cite this Article
    Mingyuan Sun, Shuai Wang, Yanbo Liang, Chao Wang, Yunhong Zhang, Hong Liu, Yu Zhang, Lin Han. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing[J]. Nano-Micro Letters, 2025, 17(1): 034 Copy Citation Text show less
    References

    [1] X. Xiao, B. Mu, G. Cao, Y. Yang, M. Wang, Flexible battery-free wireless electronic system for food monitoring. J. Sci. Adv. Mater. Devices 7, 100430 (2022).

    [2] R. Mondal, M. Al Mahadi Hasan, R. Zhang, H. Olin, Y. Yang, Nanogenerators-based self-powered sensors. Adv. Mater. Technol. 7, 2200282 (2022).

    [3] K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron. 6, 1 (2022).

    [4] K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022).

    [5] Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022).

    [6] Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022).

    [7] T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16, 14 (2023).

    [8] J. Wen, Y. Wu, Y. Gao, Q. Su, Y. Liu et al., Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics. Nano-Micro Lett. 15, 174 (2023).

    [9] S.R. Madhvapathy, J.-J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    [10] A. Zhang, E.T. Mandeville, L. Xu, C.M. Stary, E.H. Lo et al., Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023).

    [11] H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim et al., Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016).

    [12] H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: from printing to devices and signals. Adv. Mater. 33, e2004782 (2021).

    [13] S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021).

    [14] W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024).

    [15] Y.S. Rim, S.H. Bae, H. Chen, N. De Marco, Y. Yang, Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016).

    [16] T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27, 3349–3376 (2015).

    [17] S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    [18] A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).

    [19] X. Wang, Y. Liu, Q. Chen, Y. Yan, Z. Rao et al., Recent advances in stretchable field-effect transistors. J. Mater. Chem. C 9, 7796–7828 (2021).

    [20] M.-Z. Li, S.-T. Han, Y. Zhou, Recent advances in flexible field-effect transistors toward wearable sensors. Adv. Intell. Syst. 2, 2000113 (2020).

    [21] M. Sedki, Y. Chen, A. Mulchandani, Non-carbon 2D materials-based field-effect transistor biosensors: recent advances, challenges, and future perspectives. Sensors (Basel) 20, 4811 (2020).

    [22] J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Adaptive interfacial contact between copper nanoparticles and triazine functionalized graphdiyne substrate for improved lithium/sodium storage. Adv. Funct. Mater. 33, 2305254 (2023).

    [23] Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31, 2106151 (2021).

    [24] Y. Yan, Y. Zhao, Y. Liu, Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 60, 311–327 (2022).

    [25] S. Tiwari, A.K. Singh, L. Joshi, P. Chakrabarti, W. Takashima et al., Poly-3-hexylthiophene based organic field-effect transistor: detection of low concentration of ammonia. Sens. Actuat. B Chem. 171, 962–968 (2012).

    [26] L. Vijayan, A. Thomas, K.S. Kumar, K.B. Jinesh, Low power organic field effect transistors with copper phthalocyanine as active layer. J. Sci. Adv. Mater. Devices 3, 348–352 (2018).

    [27] B.S. Bhardwaj, T. Sugiyama, N. Namba, T. Umakoshi, T. Uemura et al., Orientation analysis of pentacene molecules in organic field-effect transistor devices using polarization-dependent Raman spectroscopy. Sci. Rep. 9, 15149 (2019).

    [28] P. Hu, X. He, H. Jiang, Greater than 10 cm2 V−1 s−1: a breakthrough of organic semiconductors for field-effect transistors. InfoMat 3, 613–630 (2021).

    [29] X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang et al., A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

    [30] Q. Burlingame, M. Ball, Y.-L. Loo, It’s time to focus on organic solar cell stability. Nat. Energy 5, 947–949 (2020).

    [31] S. Qin, S. Xiang, B. Eberle, K. Xie, J.C. Grunlan, High moisture barrier with synergistic combination of SiOx and polyelectrolyte nanolayers. Adv. Mater. Interfaces 6, 1900740 (2019).

    [32] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    [33] T. Ando, The electronic properties of graphene and carbon nanotubes. npg Asia Mater. 1, 17–21 (2009).

    [34] F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    [35] B.V. Krsihna, S. Ravi, M.D. Prakash, Recent developments in graphene based field effect transistors. Mater. Today Proc. 45, 1524–1528 (2021).

    [36] T. Sattar, Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 377, 10 (2019).

    [37] A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: a review. Colloids Surf. B Biointerfaces 111, 188–202 (2013).

    [38] Z. Gao, G. Wu, Y. Song, H. Li, Y. Zhang et al., Multiplexed monitoring of neurochemicals via electrografting-enabled site-selective functionalization of aptamers on field-effect transistors. Anal. Chem. 94, 8605–8617 (2022).

    [39] A. Edgar Jimenez-Cervantes, L.B. Juventino, M.H. Ana Laura, V.S. Carlos, in Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules. ed. by N. Pramoda Kumar (Rijeka, IntechOpen, 2016), p.257

    [40] A. Šolajić, J. Pešić, R. Gajić, Optical and mechanical properties and electron–phonon interaction in graphene doped with metal atoms. Opt. Quantum Electron. 52, 182 (2020).

    [41] D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017).

    [42] S. Sreejith, J. Ajayan, J.M. Radhika, B. Sivasankari, S. Tayal et al., A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 206, 112202 (2023).

    [43] S. Wang, X. Qi, D. Hao, R. Moro, Y. Ma et al., Review—recent advances in graphene-based field-effect-transistor biosensors: a review on biosensor designing strategy. J. Electrochem. Soc. 169, 027509 (2022).

    [44] Y. Wang, A. Keinonen, S. Koskenmies, S. Pitkänen, N. Fyhrquist et al., Occurrence of newly discovered human polyomaviruses in skin of liver transplant recipients and their relation with squamous cell carcinoma in situ and actinic keratosis - a single-center cohort study. Transpl. Int. 32, 516–522 (2019).

    [45] A. Bhardwaj, J. Kaur, M. Wuest, F. Wuest, In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat. Commun. 8, 1 (2017).

    [46] L. Zuccaro, C. Tesauro, T. Kurkina, P. Fiorani, H.K. Yu et al., Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano 9, 11166–11176 (2015).

    [47] M. Gobbi, A. Galanti, M.-A. Stoeckel, B. Zyska, S. Bonacchi et al., Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nat. Commun. 11, 4731 (2020).

    [48] A.G. Santos, G.O. da Rocha, J.B. de Andrade, Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Sci. Rep. 9, 1 (2019).

    [49] R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019).

    [50] Z. Gao, H. Xia, J. Zauberman, M. Tomaiuolo, J. Ping et al., Detection of sub-fM DNA with target recycling and self-assembly amplification on graphene field-effect biosensors. Nano Lett. 18, 3509–3515 (2018).

    [51] M.T. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem et al., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11, 1543 (2020).

    [52] X. Wang, Z. Hao, T.R. Olsen, W. Zhang, Q. Lin, Measurements of aptamer-protein binding kinetics using graphene field-effect transistors. Nanoscale 11, 12573–12581 (2019).

    [53] C. Chan, J. Shi, Y. Fan, M. Yang, A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sens. Actuat. B Chem. 251, 927–933 (2017).

    [54] N.I. Khan, M. Mousazadehkasin, S. Ghosh, J.G. Tsavalas, E. Song, An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst 145, 4494–4503 (2020).

    [55] W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the Internet of Things. Adv. Mater. 32, e1901493 (2020).

    [56] D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013).

    [57] B.K. Sharma, J.-H. Ahn, Graphene based field effect transistors: efforts made towards flexible electronics. Solid State Electron. 89, 177–188 (2013).

    [58] J. Ning, Y. Wang, X. Feng, B. Wang, J. Dong et al., Flexible field-effect transistors with a high on/off current ratio based on large-area single-crystal graphene. Carbon 163, 417–424 (2020).

    [59] R. Furlan de Oliveira, P.A. Livio, V. Montes-García, S. Ippolito, M. Eredia et al., Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics. Adv. Funct. Mater. 29, 1905375 (2019).

    [60] B.J. Kim, H. Jang, S.-K. Lee, B.H. Hong, J.-H. Ahn et al., High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010).

    [61] S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011).

    [62] L.-W. Tsai, N.-H. Tai, Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth. ACS Appl. Mater. Interfaces 6, 10489–10496 (2014).

    [63] Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li et al., Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4, 3201–3208 (2010).

    [64] B.J. Kim, S.-K. Lee, M.S. Kang, J.-H. Ahn, J.H. Cho, Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6, 8646–8651 (2012).

    [65] Q. Sun, W. Seung, B.J. Kim, S. Seo, S.W. Kim et al., Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27, 3411–3417 (2015).

    [66] T.Q. Trung, S. Ramasundaram, B.U. Hwang, N.E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

    [67] A. Paul, N. Yogeswaran, R. Dahiya, Ultra-flexible biodegradable pressure sensitive field effect transistors for hands-free control of robot movements. Adv. Intell. Syst. 4, 2200183 (2022).

    [68] Z. Hao, Y. Luo, C. Huang, Z. Wang, G. Song et al., An intelligent graphene-based biosensing device for cytokine storm syndrome biomarkers detection in human biofluids. Small 17, e2101508 (2021).

    [69] J. Jang, J. Kim, H. Shin, Y.G. Park, B.J. Joo et al., Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Sci. Adv. 7, eabf7194 (2021).

    [70] B.M. Blaschke, N. Tort-Colet, A. Guimerà-Brunet, J. Weinert, L. Rousseau et al., Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4, 025040 (2017).

    [71] M. Du, X. Xu, L. Yang, Y. Guo, S. Guan et al., Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosens. Bioelectron. 105, 109–115 (2018).

    [72] A. Ganguli, V. Faramarzi, A. Mostafa, M.T. Hwang, S. You et al., High sensitivity graphene field effect transistor-based detection of DNA amplification. Adv. Funct. Mater. 30, 2001031 (2020).

    [73] X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649–1653 (2010).

    [74] B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection. Biosens. Bioelectron. 74, 329–334 (2015).

    [75] P. Heremans, A.K. Tripathi, A. de Jamblinne, E.C. de Meux, B.H. Smits et al., Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266–4282 (2016).

    [76] G. Ding, H. Chen, Z. Yu, N. Liu, M. Wang, Fabricating ultra-flexible photodetectors at the neutral mechanical plane by encapsulation. J. Mater. Chem. C 9, 4070–4076 (2021).

    [77] K.S.V.I. NovoselovFal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490, 192–200 (2012).

    [78] S.B. Jo, J. Park, W.H. Lee, K. Cho, B.H. Hong, Large-area graphene synthesis and its application to interface-engineered field effect transistors. Solid State Commun. 152, 1350–1358 (2012).

    [79] M. Dankerl, M.V. Hauf, A. Lippert, L.H. Hess, S. Birner et al., Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 20, 3117–3124 (2010).

    [80] J.-B. Wang, Z. Ren, Y. Hou, X.-L. Yan, P.-Z. Liu et al., A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater. 35, 193–208 (2020).

    [81] M. Saeed, Y. Alshammari, S.A. Majeed, E. Al-Nasrallah, Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules 25, 3856 (2020).

    [82] M.H. Ani, M.A. Kamarudin, A.H. Ramlan, E. Ismail, M.S. Sirat et al., A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. J. Mater. Sci. 53, 7095–7111 (2018).

    [83] X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    [84] N. Petrone, I. Meric, J. Hone, K.L. Shepard, Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121–125 (2013).

    [85] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    [86] A. Brakat, H. Zhu, Nanocellulose-graphene hybrids: advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 13, 94 (2021).

    [87] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo et al., Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012).

    [88] V.H. Pham, T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim et al., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48, 1945–1951 (2010).

    [89] D.-Y. Kim, S. Sinha-Ray, J.-J. Park, J.-G. Lee, Y.-H. Cha et al., Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv. Funct. Mater. 24, 4986–4995 (2014).

    [90] S. Wang, P.K. Ang, Z. Wang, A.L. Tang, J.T. Thong et al., High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2010).

    [91] Q. He, S. Wu, S. Gao, X. Cao, Z. Yin et al., Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5, 5038–5044 (2011).

    [92] T.Q. Trung, N.T. Tien, D. Kim, M. Jang, O.J. Yoon et al., A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv. Funct. Mater. 24, 117–124 (2014).

    [93] R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22, 5297–5300 (2010).

    [94] S.-K. Lee, K. Rana, J.-H. Ahn, Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett. 4, 831–841 (2013).

    [95] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett et al., Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    [96] Z.-D. Huang, B. Zhang, R. Liang, Q.-B. Zheng, S.W. Oh et al., Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50, 4239–4251 (2012).

    [97] X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012).

    [98] J.-I. Fujita, R. Ueki, T. Nishijima, Y. Miyazawa, Characteristics of graphene FET directly transformed from a resist pattern through interfacial graphitization of liquid Gallium. Microelectron. Eng. 88, 2524–2526 (2011).

    [99] Y. Huang, S. Yin, Y. Huang, X. Zhang, W. Zhang et al., Graphene oxide/hexylamine superlattice field-effect biochemical sensors. Adv. Funct. Mater. 31, 2010563 (2021).

    [100] R. Zhang, Y. Jia, A disposable printed liquid gate graphene field effect transistor for a salivary cortisol test. ACS Sens. 6, 3024–3031 (2021).

    [101] M.A. Monne, P.M. Grubb, H. Stern, H. Subbaraman, R.T. Chen et al., Inkjet-printed graphene-based 1 × 2 phased array antenna. Micromachines 11, 863 (2020).

    [102] K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    [103] E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013).

    [104] L. Nayak, S. Mohanty, A. Ramadoss, A green approach to water-based graphene ink with reverse coffee ring effect. J. Mater. Sci. Mater. Electron. 32, 7431–7442 (2021).

    [105] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    [106] S.K. Ameri, P.K. Singh, A.J. D’Angelo, M.J. Panzer, S.R. Sonkusale, Flexible 3D graphene transistors with ionogel dielectric for low-voltage operation and high current carrying capacity. Adv. Electron. Mater. 2, 1500355 (2016).

    [107] S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37, 512–515 (2016).

    [108] S Park, W. Zhu, H.-Y. Chang, M.N. Yogeesh, R. Ghosh et al., High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices. 2015 IEEE International Electron Devices Meeting (IEDM). December 7-9, 2015, Washington, DC, USA. IEEE, (2015). 32.1.1–32.1.4

    [109] D. Kireev, I. Zadorozhnyi, T. Qiu, D. Sarik, F. Brings et al., Graphene field effect transistors for in vitro and ex vivo recordings. IEEE Trans. Nanotechnol. (2016).

    [110] Z. Hao, C. Huang, C. Zhao, A. Kospan, Z. Wang et al., Ultrasensitive graphene-based nanobiosensor for rapid detection of hemoglobin in undiluted biofluids. ACS Appl. Bio Mater. 5, 1624–1632 (2022).

    [111] N. Schaefer, R. Garcia-Cortadella, J. Martínez-Aguilar, G. Schwesig, X. Illa et al., Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Mater. 7, 025046 (2020).

    [112] S. Kanaparthi, S. Badhulika, Solvent-free fabrication of a biodegradable all-carbon paper based field effect transistor for human motion detection through strain sensing. Green Chem. 18, 3640–3646 (2016).

    [113] X. You, J.J. Pak, Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuat. B Chem. 202, 1357–1365 (2014).

    [114] X. You, J.J. Pak, Silk stabilized graphene FET enzymatic glucose biosensor. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). June 16–20, 2013, Barcelona, Spain. IEEE, (2013)., 2443–2446.

    [115] C.A. Tseng, C.C. Chen, R.K. Ulaganathan, C.P. Lee, H.C. Chiang et al., One-step synthesis of antioxidative graphene-wrapped copper nanoparticles on flexible substrates for electronic and electrocatalytic applications. ACS Appl. Mater. Interfaces 9, 25067–25072 (2017).

    [116] Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau et al., Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    [117] C.H. Yeh, Y.W. Lain, Y.C. Chiu, C.H. Liao, D.R. Moyano et al., Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8, 7663–7670 (2014).

    [118] Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu et al., Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate. Nanotechnology 28, 315501 (2017).

    [119] G. Fisichella, S.L. Verso, S. Di Marco, V. Vinciguerra, E. Schilirò et al., Advances in the fabrication of graphene transistors on flexible substrates. Beilstein J. Nanotechnol. 8, 467–474 (2017).

    [120] J. Liu, G. Zong, L. He, Y. Zhang, C. Liu et al., Effects of fumed and mesoporous silica nanoparticles on the properties of sylgard 184 polydimethylsiloxane. Micromachines 6, 855–864 (2015).

    [121] Y. Su, C. Ma, J. Chen, H. Wu, W. Luo et al., Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res. Lett. 15, 200 (2020).

    [122] I. Klammer, M.C. Hofmann, A. Buchenauer, W. Mokwa, U. Schnakenberg, Long-term stability of PDMS-based microfluidic systems used for biocatalytic reactions. J. Micromech. Microeng. 16, 2425–2428 (2006).

    [123] J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    [124] J.-E. Lim, S.-M. Lee, S.-S. Kim, T.-W. Kim, H.-W. Koo et al., Brush-paintable and highly stretchable Ag nanowire and PEDOT: PSS hybrid electrodes. Sci. Rep. 7, 14685 (2017).

    [125] Y. Moser, M.A.M. Gijs, Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16, 1349–1354 (2007).

    [126] B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31, 3449–3458 (2010).

    [127] D. Zhang, C. Jiang, J. Tong, X. Zong, W. Hu, Flexible strain sensor based on layer-by-layer self-assembled graphene/polymer nanocomposite membrane and its sensing properties. J. Electron. Mater. 47, 2263–2270 (2018).

    [128] H. Choi, J.S. Choi, J.S. Kim, J.H. Choe, K.H. Chung et al., Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10, 3685–3691 (2014).

    [129] W.-K. Lee, K.E. Whitener Jr., J.T. Robinson, T.J. O’Shaughnessy, P.E. Sheehan, Transferring electronic devices with hydrogenated graphene. Adv. Mater. Interfaces 6, 1801974 (2019).

    [130] P. Sahatiya, S. Badhulika, Wireless, smart, human motion monitoring using solution processed fabrication of graphene–MoS2 transistors on paper. Adv. Electron. Mater. 4, 1700388 (2018).

    [131] K.-A. Son, B. Yang, H.-C. Seo, D. Wong, J.S. Moon et al., High-speed graphene field effect transistors on microbial cellulose biomembrane. IEEE Trans. Nanotechnol. 16, 239–244 (2017).

    [132] L. Lan, J. Ping, J. Xiong, Y. Ying, Sustainable natural bio-origin materials for future flexible devices. Adv. Sci. 9, e2200560 (2022).

    [133] T.Q. Trung, S. Ramasundaram, S.W. Hong, N.-E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 24, 3438–3445 (2014).

    [134] X. Yang, A. Vorobiev, J. Yang, K. Jeppson, J. Stake, A linear-array of 300-GHz antenna integrated GFET detectors on a flexible substrate. IEEE Trans. Terahertz Sci. Technol. 10, 554–557 (2020).

    [135] J.W. Shin, M.H. Kang, S. Oh, B.C. Yang, K. Seong et al., Atomic layer deposited high-k dielectric on graphene by functionalization through atmospheric plasma treatment. Nanotechnology 29, 195602 (2018).

    [136] Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo et al., High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale 7, 10954–10962 (2015).

    [137] H.-Y. Chang, S. Yang, J. Lee, L. Tao, W.-S. Hwang et al., High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    [138] S.-H. Jen, J.A. Bertrand, S.M. George, Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J. Appl. Phys. 109, 084305 (2011).

    [139] B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks et al., High- k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    [140] Q.-K. Feng, S.-L. Zhong, J.-Y. Pei, Y. Zhao, D.-L. Zhang et al., Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022).

    [141] S. Wang, C. Yang, X. Li, H. Jia, S. Liu et al., Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J. Mater. Chem. C 10, 6196–6221 (2022).

    [142] A. Sanne, H.C.P. Movva, S. Kang, C. McClellan, C.M. Corbet et al., Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors. Appl. Phys. Lett. 104, 083106 (2014).

    [143] S. Park, H.-Y. Chang, S. Rahimi, A.L. Lee, L. Tao et al., Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv. Electron. Mater. 4, 1700043 (2018).

    [144] I.-Y. Lee, H.-Y. Park, J.-H. Park, G. Yoo, M.-H. Lim et al., Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics. Nanoscale 6, 3830–3836 (2014).

    [145] J.G. Oh, K. Pak, C.S. Kim, J.H. Bong, W.S. Hwang et al., A high-performance top-gated graphene field-effect transistor with excellent flexibility enabled by an iCVD copolymer gate dielectric. Small 14, 1703035 (2018).

    [146] F. Chen, J. Xia, D.K. Ferry, N. Tao, Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

    [147] P.A. Flores-Silva, C. Borja-Hernández, C. Magaña, D.R. Acosta, A.R. Botello-Méndez et al., Graphene field effect transistors using TiO2 as the dielectric layer. Phys. E Low Dimension. Syst. Nanostruct. 124, 114282 (2020).

    [148] I. Alam, S. Subudhi, S. Das, M. Mandal, S. Patra et al., Graphene-based field-effect transistor using gated highest-k ferroelectric thin film. Solid State Commun. 371, 115258 (2023).

    [149] J. Wen, C. Yan, Z. Sun, 2D electronics: the application of a high-κ polymer dielectric in graphene transistors. Adv. Electron. Mater. 6, 2070031 (2020).

    [150] C. Jang, S. Adam, J.H. Chen, E.D. Williams, S. Das Sarma et al., Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 101, 146805 (2008).

    [151] V.Q. Dang, T.Q. Trung, L. Duy, B.Y. Kim, S. Siddiqui et al., High-performance flexible ultraviolet (UV) phototransistor using hybrid channel of vertical ZnO nanorods and graphene. ACS Appl. Mater. Interfaces 7, 11032–11040 (2015).

    [152] A. Dathbun, S. Kim, S. Lee, D.K. Hwang, J.H. Cho, Flexible and transparent graphene complementary logic gates. Mol. Syst. Des. Eng. 4, 484–490 (2019).

    [153] S. Kim, S.B. Jo, J. Kim, D. Rhee, Y.Y. Choi et al., Gate-deterministic remote doping enables highly retentive graphene-MXene hybrid memory devices on plastic. Adv. Funct. Mater. 32, 2111956 (2022).

    [154] J. Cho, J. Lee, Y. He, B. Kim, T. Lodge et al., High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008).

    [155] J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He et al., Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistorsonplastic. Nat. Mater. 7, 900–906 (2008).

    [156] Q. Sun, D.H. Kim, S.S. Park, N.Y. Lee, Y. Zhang et al., Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 26, 4735–4740 (2014).

    [157] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    [158] F. Chen, J. Xia, N. Tao, Ionic screening of charged-impurity scatt ering in graphene. Nano Lett. 9, 1621–1625 (2009).

    [159] S. Mansouri Majd, A. Salimi, Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal. Chim. Acta 1000, 273–282 (2018).

    [160] W. Fu, L. Jiang, E.P. van Geest, L.M.C. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017).

    [161] L.T. Duy, T.Q. Trung, V.Q. Dang, B.-U. Hwang, S. Siddiqui et al., Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Funct. Mater. 26, 4329–4338 (2016).

    [162] U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29, 1603544 (2017).

    [163] S. Huang, Y. Liu, Y. Zhao, Z. Ren, C.F. Guo, Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 29, 1805924 (2019).

    [164] G. Hu, J. Wu, C. Ma, Z. Liang, W. Liu et al., Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor. Mater. Horiz. 6, 302–310 (2019).

    [165] E.B. Secor, A.B. Cook, C.E. Tabor, M.C. Hersam, Wiring up liquid metal: stable and robust electrical contacts enabled by printable graphene inks. Adv. Electron. Mater. 4, 1700483 (2018).

    [166] F. Giubileo, A. Di, Bartolomeo the role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 92, 143–175 (2017).

    [167] A. Tabatabai, A. Fassler, C. Usiak, C. Majidi, Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194–6200 (2013).

    [168] Z. Zhou, Y. Yao, C. Zhang, Z. Deng, Q. Li et al., Liquid metal printed optoelectronics toward fast fabrication of customized and erasable patterned displays. Adv. Mater. Technol. 7, 2101010 (2022).

    [169] N. Ochirkhuyag, R. Matsuda, Z. Song, F. Nakamura, T. Endo et al., Liquid metal-based nanocomposite materials: fabrication technology and applications. Nanoscale 13, 2113–2135 (2021).

    [170] R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23, 5292–5296 (2013).

    [171] J.L. Melcher, K.S. Elassy, R.C. Ordonez, C. Hayashi, A.T. Ohta et al., Spray-on liquid-metal electrodes for graphene field-effect transistors. Micromachines 10, 54 (2019).

    [172] L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31, e1806133 (2019).

    [173] L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E.S. Hosseini, R. Dahiya, A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte. Adv. Mater. 32, e1907254 (2020).

    [174] W. Luo, Y. Ma, T. Li, H.K. Thabet, C. Hou et al., Overview of MXene/conducting polymer composites for supercapacitors. J. Energy Storage 52, 105008 (2022).

    [175] K. Namsheer, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659–5697 (2021).

    [176] S. Ramanavicius, A. Ramanavicius, Conducting polymers in the design of biosensors and biofuel cells. Polymers 13, 49 (2020).

    [177] R. Ma, M. Zeng, Y. Li, T. Liu, Z. Luo et al., Rational anode engineering enables progresses for different types of organic solar cells. Adv. Energy Mater. 11, 2100492 (2021).

    [178] B. Zhou, J. Song, B. Wang, Y. Feng, C. Liu et al., Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 15, 9520–9530 (2022).

    [179] H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022).

    [180] S. Raman, R.S. Arunagirinathan, Silver nanowires in stretchable resistive strain sensors. Nanomaterials 12, 1932 (2022).

    [181] W. Li, S. Yang, A. Shamim, Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flex. Electron. 3, 13 (2019).

    [182] K.E. Laliberte, P. Scott, N.I. Khan, M.S. Mahmud, E. Song, A wearable graphene transistor-based biosensor for monitoring IL-6 biomarker. Microelectron. Eng. 262, 111835 (2022).

    [183] C. Wu, S. Xu, W. Wang, Synthesis and applications of silver nanocomposites: a review. J. Phys. Conf. Ser. 1948, 012216 (2021).

    [184] N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19, 445201 (2008).

    [185] S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).

    [186] K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022).

    [187] P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012).

    [188] J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013).

    [189] S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152–160 (2022).

    [190] R. Kawabata, T. Araki, M. Akiyama, T. Uemura, T. Wu et al., Stretchable printed circuit board integrated with Ag-nanowire-based electrodes and organic transistors toward imperceptible electrophysiological sensing. Flex. Print. Electron. 7, 044002 (2022).

    [191] L. Hu, H. Wu, Y. Cui, Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011).

    [192] L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley et al., Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3, 4075–4084 (2011).

    [193] J.H. Park, G.T. Hwang, S. Kim, J. Seo, H.J. Park et al., Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 29, 1603473 (2017).

    [194] M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park et al., High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814–2821 (2013).

    [195] I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang et al., Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012).

    [196] C. Jeong, P. Nair, M. Khan, M. Lundstrom, M.A. Alam, Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 11, 5020–5025 (2011).

    [197] J. Kim, M.S. Lee, S. Jeon, M. Kim, S. Kim et al., Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27, 3292–3297 (2015).

    [198] J. Sheng, Z. Han, G. Jia, S. Zhu, Y. Xu et al., Covalently bonded graphene sheets on carbon nanotubes: direct growth and outstanding properties. Adv. Funct. Mater. 33, 2306785 (2023).

    [199] C. Zhang, S. Cheng, K. Si, N. Wang, Y. Wang et al., All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. J. Mater. Chem. C 8, 7436–7446 (2020).

    [200] X. Zhang, Y. Hu, H. Gu, P. Zhu, W. Jiang et al., A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics. Adv. Mater. Technol. 4, 1900367 (2019).

    [201] K. Kang, Y. Cho, K.J. Yu, Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines 9, 263 (2018).

    [202] Z. Gao, H. Kang, C.H. Naylor, F. Streller, P. Ducos et al., Scalable production of sensor arrays based on high-mobility hybrid graphene field effect transistors. ACS Appl. Mater. Interfaces 8, 27546–27552 (2016).

    [203] M. Banik, M. Oded, R. Shenhar, Coupling the chemistry and topography of block copolymer films patterned by soft lithography for nanoparticle organization. Soft Matter 18, 5302–5311 (2022).

    [204] J. Kajtez, S. Buchmann, S. Vasudevan, M. Birtele, S. Rocchetti et al., 3D-printed soft lithography for complex compartmentalized microfluidic neural devices. Adv. Sci. 8, e2101787 (2021).

    [205] X. Han, B. Su, B. Zhou, Y. Wu, J. Meng, Soft lithographic fabrication of free-standing ceramic microparts using moisture-sensitive PDMS molds. J. Micromech. Microeng. 29, 035002 (2019).

    [206] M.W. Park, D.Y. Kim, U. An, J. Jang, J.H. Bae et al., Organizing reliable polymer electrode lines in flexible neural networks via coffee ring-free micromolding in capillaries. ACS Appl. Mater. Interfaces 14, 46819–46826 (2022).

    [207] J. Deng, L. Jiang, B. Si, H. Zhou, J. Dong et al., AFM-Based nanofabrication and quality inspection of three-dimensional nanotemplates for soft lithography. J. Manuf. Process. 66, 565–573 (2021).

    [208] H. Li, H. Zhang, W. Luo, R. Yuan, Y. Zhao et al., Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of microRNA. Anal. Chim. Acta 1229, 340380 (2022).

    [209] N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016).

    [210] S. Zhu, Y. Tang, C. Lin, X.Y. Liu, Y. Lin, Recent advances in patterning natural polymers: from nanofabrication techniques to applications. Small Meth. 5, 2001060 (2021).

    [211] M.W. Jung, S. Myung, K.W. Kim, W. Song, Y.Y. Jo et al., Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Nanotechnology 25, 285302 (2014).

    [212] M.J. Lima, V.M. Correlo, R.L. Reis, Micro/nano replication and 3D assembling techniques for scaffold fabrication. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 615–621 (2014).

    [213] T. Hong Tham Phan, S.-J. Kim, Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chem. Eng. Sci. 258, 117768 (2022).

    [214] X. Sui, H. Pu, A. Maity, J. Chang, B. Jin et al., Field-effect transistor based on percolation network of reduced graphene oxide for real-time ppb-level detection of lead ions in water. ECS J. Solid State Sci. Technol. 9, 115012 (2020).

    [215] T. Kim, H. Kim, S.W. Kwon, Y. Kim, W.K. Park et al., Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano Lett. 12, 743–748 (2012).

    [216] P. Xiao, J. Gu, J. Chen, J. Zhang, R. Xing et al., Micro-contact printing of graphene oxide nanosheets for fabricating patterned polymer brushes. Chem. Commun. 50, 7103–7106 (2014).

    [217] D. Tian, Y. Song, L. Jiang, Patterning of controllable surface wettability for printing techniques. Chem. Soc. Rev. 42, 5184–5209 (2013).

    [218] H. Ravanbakhsh, G. Bao, Z. Luo, L.G. Mongeau, Y.S. Zhang, Composite inks for extrusion printing of biological and biomedical constructs. ACS Biomater. Sci. Eng. 7, 4009–4026 (2021).

    [219] S. Majee, W. Zhao, A. Sugunan, T. Gillgren, J.A. Larsson et al., Highly conductive films by rapid photonic annealing of inkjet printable starch–graphene ink. Adv. Mater. Interfaces 9, 2101884 (2022).

    [220] C. Buga, J.C. Viana, Optimization of print quality of inkjet printed PEDOT: PSS patterns. Flex. Print. Electron. 7, 045004 (2022).

    [221] P. Lin, X. Ji, L. Yin, J. Zhang, Inkjet-printed patterned quantum dots film for high-efficiency displays. IEEE Photonics J. 14, 8259606 (2022).

    [222] T. Kraus, Soft electronics by inkjet printing metal inks on porous substrates. Flex. Print. Electron. 7, 033001 (2022).

    [223] Z. Yin, Y. Huang, N. Bu, X. Wang, Y. Xiong, Inkjet printing for flexible electronics: materials, processes and equipments. Chin. Sci. Bull. 55, 3383–3407 (2010).

    [224] L. Xiang, Z. Wang, Z. Liu, S.E. Weigum, Q. Yu et al., Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens. J. 16, 8359–8364 (2016).

    [225] J.M. Hoey, A. Lutfurakhmanov, D.L. Schulz, I.S. Akhatov, A review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012, 324380 (2012).

    [226] T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner et al., Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769–779 (2015).

    [227] D. Jahn, R. Eckstein, L.M. Schneider, N. Born, G. Hernandez-Sosa et al., Digital aerosol jet printing for the fabrication of terahertz metamaterials. Adv. Mater. Technol. 3, 1700236 (2018).

    [228] W. Yu, P.J. Cai, R. Liu, F.P. Shen, T. Zhang, A flexible ultrasensitive IgG-modified rGO-based FET biosensor fabricated by aerosol jet printing. Appl. Mech. Mater. 748, 157–161 (2015).

    [229] D. Wu, Q.-D. Chen, L.-G. Niu, J. Jiao, H. Xia et al., 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technol. Lett. 21, 1535–1537 (2009).

    [230] J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan et al., High curvature concave–convex microlens. IEEE Photonics Technol. Lett. 27, 2465–2468 (2015).

    [231] D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa et al., In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light. Sci. Appl. 4, e228 (2015).

    [232] X.-P. Zhan, J.-F. Ku, Y.-X. Xu, X.-L. Zhang, J. Zhao et al., Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers. IEEE Photonics Technol. Lett. 27, 311–314 (2015).

    [233] Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu et al., Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light. Sci. Appl. 3, e129 (2014).

    [234] A. Johansson, H.-C. Tsai, J. Aumanen, J. Koivistoinen, P. Myllyperkiö et al., Chemical composition of two-photon oxidized graphene. Carbon 115, 77–82 (2017).

    [235] Y. He, L. Zhu, Y. Liu, J.-N. Ma, D.-D. Han et al., Femtosecond laser direct writing of flexible all-reduced graphene oxide FET. IEEE Photonics Technol. Lett. 28, 1996–1999 (2016).

    [236] M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13, 7166–7174 (2019).

    [237] A. Samouco, A.C. Marques, A. Pimentel, R. Martins, E. Fortunato, Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flex. Print. Electron. 3, 044002 (2018).

    [238] T.-R. Cui, Y.-C. Qiao, J.-W. Gao, C.-H. Wang, Y. Zhang et al., Ultrasensitive detection of COVID-19 causative virus (SARS-CoV-2) spike protein using laser induced graphene field-effect transistor. Molecules 26, 6947 (2021).

    [239] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    [240] S.-M. Choi, S.-H. Jhi, Y.-W. Son, Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010).

    [241] G. Cocco, E. Cadelano, L. Colombo, Gap opening in graphene by shear strain. Phys. Rev. B 81, 241412 (2010).

    [242] G. Gui, J. Li, J. Zhong, Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B 78, 075435 (2008).

    [243] S. Quan, Y. Zhang, W. Chen, Strain effects in the electron orbital coupling and electric structure of graphene. Phys. Chem. Chem. Phys. 24, 23929–23935 (2022).

    [244] Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi et al., Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter 405, 1301–1306 (2010).

    [245] Z. Hao, Z. Wang, Y. Li, Y. Zhu, X. Wang et al., Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 10, 21681–21688 (2018).

    [246] Y. Yang, X. Yang, X. Zou, S. Wu, D. Wan et al., Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 27, 1604096 (2017).

    [247] T.Q. Trung, N.T. Tien, D. Kim, J.H. Jung, O.J. Yoon et al., High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 24, 5254–5260 (2012).

    [248] A. Singh, S. Lee, H. Watanabe, H. Lee, Graphene-based ultrasensitive strain sensors. ACS Appl. Electron. Mater. 2, 523–528 (2020).

    [249] S.B. Kumar, J. Guo, Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 12, 1362–1366 (2012).

    [250] V. Hung Nguyen, T.X. Hoang, P. Dollfus, J.C. Charlier, Transport properties through graphene grain boundaries: strain effects versus lattice symmetry. Nanoscale 8, 11658–11673 (2016).

    [251] I.Y. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene. Europhys. Lett. 132, 48002 (2020).

    [252] X. Yang, W. Chen, Q. Fan, J. Chen, Y. Chen et al., Electronic skin for health monitoring systems: properties, functions, and applications. Adv. Mater. 36, e2402542 (2024).

    [253] Y. Chen, X. Wan, G. Li, J. Ye, J. Gao et al., Metal hydrogel-based integrated wearable biofuel cell for self-powered epidermal sweat biomarker monitoring. Adv. Funct. Mater. (2024).

    [254] A.J. Bandodkar, W.J. Jeang, R. Ghaffari, J.A. Rogers, Wearable sensors for biochemical sweat analysis. Annual Rev. Anal. Chem. 12, 1–22 (2019).

    [255] Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research (Wash D C) 2020, 8710686 (2020).

    [256] N. Li, J. Peng, W.-J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4, 377–407 (2021).

    [257] F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    [258] Y. Yang, H. Zhang, Z.H. Lin, Y.S. Zhou, Q. Jing et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7, 9213–9222 (2013).

    [259] S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013).

    [260] W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020).

    [261] D.-S. Liu, H. Ryu, U. Khan, C. Wu, J.-H. Jung et al., Piezoionic-powered graphene strain sensor based on solid polymer electrolyte. Nano Energy 81, 105610 (2021).

    [262] J.B. Park, M.S. Song, R. Ghosh, R.K. Saroj, Y. Hwang et al., Highly sensitive and flexible pressure sensors using position- and dimension-controlled ZnO nanotube arrays grown on graphene films. NPG Asia Mater. 13, 57 (2021).

    [263] T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016).

    [264] S. Mondal, B.K. Min, Y. Yi, V.-T. Nguyen, C.-G. Choi, Gamma-ray tolerant flexible pressure–temperature sensor for nuclear radiation environment. Adv. Mater. Technol. 6, 2001039 (2021).

    [265] J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    [266] M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    [267] Y. Liu, L. Zhong, S. Zhang, J. Wang, Z. Liu, An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sens. Actuat. B Chem. 354, 131204 (2022).

    [268] L. Qiao, M.R. Benzigar, J.A. Subramony, N.H. Lovell, G. Liu, Advances in sweat wearables: sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interfaces 12, 34337–34361 (2020).

    [269] M. Elsherif, M.U. Hassan, A.K. Yetisen, H. Butt, Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018).

    [270] Y. Chen, S. Lu, S. Zhang, Y. Li, Z. Qu et al., Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, e1701629 (2017).

    [271] J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    [272] A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024).

    [273] S. Murphy, M. Zweyer, R.R. Mundegar, D. Swandulla, K. Ohlendieck, Proteomic serum biomarkers for neuromuscular diseases. Expert Rev. Proteom. 15, 277–291 (2018).

    [274] L. Wang, J.A. Jackman, W.B. Ng, N.-J. Cho, Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv. Funct. Mater. 26, 8623–8630 (2016).

    [275] O.S. Kwon, S.J. Park, J.Y. Hong, A.R. Han, J.S. Lee et al., Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6, 1486–1493 (2012).

    [276] S. Farid, X. Meshik, M. Choi, S. Mukherjee, Y. Lan et al., Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens. Bioelectron. 71, 294–299 (2015).

    [277] Z. Wang, Z. Hao, S. Yu, C.G. De Moraes, L.H. Suh et al., An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 29, 1905202 (2019).

    [278] Z. Wang, Z. Hao, X. Wang, C. Huang, Q. Lin et al., A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2005958 (2021).

    [279] J. Bai, D. Liu, X. Tian, Y. Wang, B. Cui et al., Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. Sci. Adv. 10, eadl1856 (2024).

    [280] M. Sang, M. Cho, S. Lim, I.S. Min, Y. Han et al., Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. Sci. Adv. 9, eadl1765 (2023).

    [281] Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon et al., Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37, 82–87 (2012).

    [282] C. Huang, Z. Hao, T. Qi, Y. Pan, X. Zhao, An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose. J. Materiomics 6, 308–314 (2020).

    [283] Y. Zhi, J. Jian, Y. Qiao, Y. Tian, Y. Yang et al., An ultrathin flexible affinity-based graphene field-effect transistor for glucose monitoring. 2020 21st International Conference on Electronic Packaging Technology (ICEPT). August 12–15, 2020, Guangzhou, China. IEEE, (2020), pp. 1–6.

    [284] H.C. Lee, E.Y. Hsieh, K. Yong, S. Nam, Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 13, 1406–1412 (2020).

    [285] N. Gao, R. Zhou, B. Tu, T. Tao, Y. Song et al., Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring. Anal. Chim. Acta 1239, 340719 (2023).

    [286] S.A. Hashemi, S.M. Mousavi, S. Bahrani, N. Omidifar, M. Arjmand et al., Decorated graphene oxide flakes with integrated complex of 8-hydroxyquinoline/NiO toward accurate detection of glucose at physiological conditions. J. Electroanal. Chem. 893, 115303 (2021).

    [287] J. Yi, X. Han, F. Gao, L. Cai, Y. Chen et al., A novel metal-organic framework of Ba-hemin with enhanced cascade activity for sensitive glucose detection. RSC Adv. 12, 20544–20549 (2022).

    [288] C. Zhang, C. Wei, D. Chen, Z. Xu, X. Huang, Construction of inorganic-organic cascade enzymes biosensor based on gradient polysulfone hollow fiber membrane for glucose detection. Sens. Actuat. B Chem. 385, 133630 (2023).

    [289] R. Bi, X. Ma, K. Miao, P. Ma, Q. Wang, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb. Technol. 162, 110132 (2023).

    [290] J. Gao, Y. Gao, Y. Han, J. Pang, C. Wang et al., Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2, 1090–1098 (2020).

    [291] M. Ku, J. Kim, J.E. Won, W. Kang, Y.G. Park et al., Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).

    [292] C. Huang, Z. Hao, Z. Wang, H. Wang, X. Zhao et al., An ultraflexible and transparent graphene-based wearable sensor for biofluid biomarkers detection. Adv. Mater. Technol. 7, 2101131 (2022).

    [293] J. Ju, W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens. Bioelectron. 58, 219–225 (2014).

    [294] I. Fakih, O. Durnan, F. Mahvash, I. Napal, A. Centeno et al., Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11, 3226 (2020).

    [295] E. Zdrachek, E. Bakker, Potentiometric sensing. Anal. Chem. 91, 2–26 (2019).

    [296] I. Fakih, A. Centeno, A. Zurutuza, B. Ghaddab, M. Siaj et al., High resolution potassium sensing with large-area graphene field-effect transistors. Sens. Actuat. B Chem. 291, 89–95 (2019).

    [297] H. Li, Y. Zhu, M.S. Islam, M.A. Rahman, K.B. Walsh et al., Graphene field effect transistors for highly sensitive and selective detection of K+ ions. Sens. Actuat. B Chem. 253, 759–765 (2017).

    [298] T.A. Baldo, L.F. de Lima, L.F. Mendes, W.R. de Araujo, T.R.L.C. Paixão et al., Wearable and biodegradable sensors for clinical and environmental applications. ACS Appl. Electron. Mater. 3, 68–100 (2021).

    [299] R. de Furlan Oliveira, V. Montes-García, P.A. Livio, M.B. González-García, P. Fanjul-Bolado et al., Selective ion sensing in artificial sweat using low-cost reduced graphene oxide liquid-gated plastic transistors. Small 18, e2201861 (2022).

    [300] Z. Wang, Z. Hao, X. Wang, C. Huang, Q. Lin et al., Cytokine storm biomarkers: a flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2170026 (2021).

    [301] J. Zhou, S. Zhou, P. Fan, X. Li, Y. Ying et al., Implantable electrochemical microsensors for in vivo monitoring of animal physiological information. Nano-Micro Lett. 16, 49 (2023).

    [302] F. Veliev, A. Briançon-Marjollet, V. Bouchiat, C. Delacour, Impact of crystalline quality on neuronal affinity of pristine graphene. Biomaterials 86, 33–41 (2016).

    [303] A. Fabbro, D. Scaini, V. León, E. Vázquez, G. Cellot et al., Graphene-based interfaces do not alter target nerve cells. ACS Nano 10, 615–623 (2016).

    [304] C. Hébert, E. Masvidal-Codina, A. Suarez-Perez, A.B. Calia, G. Piret et al., Flexible graphene solution-gated field-effect transistors: efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 28, 1703976 (2018).

    [305] F. Veliev, Z. Han, D. Kalita, A. Briançon-Marjollet, V. Bouchiat et al., Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors. Front. Neurosci. 11, 466 (2017).

    [306] D. Kireev, M. Brambach, S. Seyock, V. Maybeck, W. Fu et al., Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 7, 6658 (2017).

    [307] Y.Y. Wang, T.D. Pham, K. Zand, J. Li, P.J. Burke, Charging the quantum capacitance of graphene with a single biological ion channel. ACS Nano 8, 4228–4238 (2014).

    [308] E. Masvidal-Codina, X. Illa, M. Dasilva, A.B. Calia, T. Dragojević et al., High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019).

    [309] B. Zhou, K. Fan, J. Guo, J. Feng, C. Yang et al., Plug-and-play fiber-optic sensors based on engineered cells for neurochemical monitoring at high specificity in freely moving animals. Sci. Adv. 9, eadg0218 (2023).

    [310] C. Zhao, K.M. Cheung, I.-W. Huang, H. Yang, N. Nakatsuka et al., Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).

    [311] T. Ngernsutivorakul, T.S. White, R.T. Kennedy, Microfabricated probes for studying brain chemistry: a review. ChemPhysChem 19, 1128–1142 (2018).

    [312] J. Jankovic, Parkinson’s disease tremors and serotonin. Brain 141, 624–626 (2018).

    [313] R.A. McCutcheon, A. Abi-Dargham, O.D. Howes, Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci. 42, 205–220 (2019).

    [314] P.T. Francis, Glutamatergic systems in Alzheimer’s disease. Int. J. Geriat. Psychiatry 18, S15–S21 (2003).

    [315] G. Wu, N. Zhang, A. Matarasso, I. Heck, H. Li et al., Implantable aptamer-graphene microtransistors for real-time monitoring of neurochemical release in vivo. Nano Lett. 22, 3668–3677 (2022).

    [316] R. Garcia-Cortadella, G. Schwesig, C. Jeschke, X. Illa, A.L. Gray et al., Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nat. Commun. 12, 211 (2021).

    [317] S. Lowe, N.M. O’Brien-Simpson, L.A. Connal, Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym. Chem. 6, 198–212 (2015).

    [318] A. Golabchi, B. Wu, B. Cao, C.J. Bettinger, X.T. Cui, Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials 225, 119519 (2019).

    [319] D. Chan, J.C. Chien, E. Axpe, L. Blankemeier, S.W. Baker et al., Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 34, e2109764 (2022).

    [320] H.-J. Jin, J. Park, V. Karageorgiou, U.-J. Kim, R. Valluzzi et al., Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005).

    [321] D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett et al., Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    [322] Y. Cao, B. Wang, Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10, 1514–1524 (2009).

    [323] A.S. Gobin, V.E. Froude, A.B. Mathur, Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J. Biomed. Mater. Res. A 74, 465–473 (2005).

    [324] A.B. Calia, E. Masvidal-Codina, T.M. Smith, N. Schäfer, D. Rathore et al., Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat. Nanotechnol. 17, 301–309 (2022).

    [325] M. Sun, C. Zhang, S. Lu, S. Mahmood, J. Wang et al., Recent advances in graphene field-effect transistor toward biological detection. Adv. Funct. Mater. (2024).

    [326] Y. Yang, B.K. Jung, T. Park, J. Ahn, Y.K. Choi et al., Sensory nervous system-inspired self-classifying, decoupled, multifunctional sensor with resistive-capacitive operation using silver nanomaterials. Adv. Funct. Mater. (2024).

    [327] Y. Cheng, R. Zhang, W. Zhu, H. Zhong, S. Liu et al., A multimodal hydrogel soft-robotic sensor for multi-functional perception. Front. Robot. AI 8, 692754 (2021).

    [328] Y. Yang, L. Wang, J. Zhang, J. Zhou, H. Gu, Multifunctional biomimetic e-skin constructed in situ on tanned sheep leather as a multimodal sensor for the monitoring of motion and health. Ind. Eng. Chem. Res. 63, 14176–14189 (2024).

    [329] K.L.A. Cao, A.M. Rahmatika, Y. Kitamoto, M.T.T. Nguyen, T. Ogi, Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J. Colloid Interface Sci. 589, 252–263 (2021).

    [330] Z. Xie, P. Sun, S. Cao, Y. Yang, X. Wang et al., Multi-channel detection of dopamine and glucose utilizing graphene field effect transistor electrochemical sensor and efficient data fusion algorithm. J. Electroanal. Chem. 950, 117901 (2023).

    [331] S. Beyranvand, M.F. Gholami, A.D. Tehrani, J.P. Rabe, M. Adeli, Construction and evaluation of a self-calibrating multiresponse and multifunctional graphene biosensor. Langmuir 35, 10461–10474 (2019).

    Mingyuan Sun, Shuai Wang, Yanbo Liang, Chao Wang, Yunhong Zhang, Hong Liu, Yu Zhang, Lin Han. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing[J]. Nano-Micro Letters, 2025, 17(1): 034
    Download Citation