[1] KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. J Energy Storage, 2020, 27: 101047.
[2] GUTSCH M, LEKER J. Global warming potential of lithium-ion battery energy storage systems: A review[J]. J Energy Storage, 2022, 52: 105030.
[6] LI Z, LIU P, ZHU K, et al. Solid-state electrolytes for sodium metal batteries[J]. Energy Fuels, 2021, 35(11): 9063-9079.
[7] LIU Y J, LIU L M, PENG J S, et al. A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm-1 prepared by solution-assisted solid-state reaction method[J]. J Power Sources, 2022, 518: 230765.
[8] GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater Res Bull, 1976, 11(2): 203-220.
[9] HONG H Y-P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Mater Res Bull, 1976, 11(2): 173-182.
[11] DENG Y, EAMES C, NGUYEN L H B, et al. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON) solid electrolytes[J]. Chem Mater, 2018, 30(8): 2618-2630.
[12] JOLLEY A G, TAYLOR D D, SCHREIBER N J, et al. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON[J]. J Am Ceram Soc, 2015, 98(9): 2902-2907.
[13] SHAO Y J, ZHONG G M, LU Y X, et al. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Storage Mater, 2019, 23: 514-521.
[14] PARK H, KANG M, PARK Y C, et al. Improving ionic conductivity of Nasicon (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior[J]. J Power Sources, 2018, 399: 329-336.
[15] JUNG S W, WANG J E, KIM D G, et al. Rare-earth element substitution of Na1+xZr2SixP3-xO12 (x = 2) solid electrolyte: implications for all-solid-state Na ion batteries[J]. ACS Appl Nano Mater, 2022, 5(10): 13894-13902.
[16] RAN L B, BAKTASH A, LI M, et al. Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries' performance[J]. Energy Storage Mater, 2021, 40: 282-291.
[17] ZHAO C L, LIU L L, QI X G, et al. Solid-state sodium batteries[J]. Adv Energy Mater, 2018, 8(17): 1703012.
[18] WANG H, ZHAO G F, WANG S M, et al. Enhanced ionic conductivity of a Na3Zr2Si2PO12 solid electrolyte with Na2SiO3 obtained by liquid phase sintering for solid-state Na+ batteries[J]. Nanoscale, 2022, 14(3): 823-832.
[19] PARK H, JUNG K, NEZAFATI M, et al. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium[J]. ACS Appl Mater Interfaces, 2016, 8(41): 27814-27824.
[20] SONG S F, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Sci Rep, 2016, 6: 32330.
[21] LI C, LI R, LIU K, et al. NaSICON: A promising solid electrolyte for solid-state sodium batteries[J]. Interdiscip Mater, 2022, 1(3): 396-416.
[22] ZOU Z Y, MA N, WANG A P, et al. Identifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms[J]. Adv Funct Mater, 2021, 31(49): 2107747.
[23] NAQASH S, MA Q L, TIETZ F, et al. Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction[J]. Solid State Ionics, 2017, 302: 83-91.
[24] NIAZMAND M, KHAKPOUR Z, MORTAZAVI A. Electrochemical properties of nanostructure NASICON synthesized by chemical routes: A comparison between coprecipitation and sol-gel[J]. J Alloys Compd, 2019, 798: 311-319.
[25] DHAS N A, PATIL K C. Controlled combustion synthesis and properties of fine-particle NASICON materials[J]. J Mater Chem, 1994, 4(3): 491-497.
[26] CLEARFIELD A, JERUS P, COTMAN RN. Hydrothermal and solid state synthesis of sodium zirconium silicophosphates[J]. Solid State Ionics, 1981, 5: 301-304.
[27] FUENTES R F F, SOARES M, MARQUES F. Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors[J]. J Eur Ceram Soc, 2005, 25(4): 455-462.
[28] LI W K, ZHAO N, BI Z J, et al. Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery: Preparation using spray-drying method and its property[J]. J Inorg Mater, 2022, 37(2): 189-196.
[29] LIU S Y, ZHOU C, WANG Y, et al. Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J]. ACS Appl Mater Interfaces, 2020, 12(3): 3502-3509.
[30] YANG G M, ZHAI Y F, YAO J Y, et al. A facile method for the synthesis of a sintering dense nano-grained Na3Zr2Si2PO12 Na+-ion solid-state electrolyte[J]. Chem Commun, 2021, 57(33): 4023-4026.
[31] DUBEY B P, VINODHKUMAR A, SAHOO A, et al. Microstructural tuning of solid electrolyte Na3Zr2Si2PO12 by polymer-assisted solution synthesis method and its effect on ionic conductivity and dielectric properties[J]. ACS Appl Energy Mater, 2021, 4(6): 5475-5485.
[32] HUANG C C, YANG G M, YU W H, et al. Gallium-substituted nasicon Na3Zr2Si2PO12 solid electrolytes[J]. J Alloys Compd, 2021, 855: 157501.
[33] SHEN L, YANG J, LIU G, et al. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries[J]. Mater Today Energy, 2021, 20: 100691.
[34] SU H, ZHANG S W, LIU Y M, et al. Na3Zr2Si2PO12 solid-state electrolyte with glass-like morphology for enhanced dendrite suppression[J]. Rare Metals, 2022, 41(12): 4086-4093.
[35] YAO L, JOSE A A, QIANG Y, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Adv Energy Mater, 2019, 9(28): 1901205.
[36] SUN F, XIANG Y, SUN Q, et al. Insight into ion diffusion dynamics/mechanisms and electronic structure of highly conductive sodium-rich Na3+xLaxZr2-xSi2PO12 (0≤x≤0.5) solid-state electrolytes[J]. ACS Appl Mater Interfaces, 2021, 13(11): 13132-13138.
[37] MA Q L, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution assisted solid-state reaction method as sodium-ion conductors[J]. Chem Mater, 2016, 28(13): 4821-4828.
[38] LIU L M, LIANG D S, ZHOU X L, et al. Enhancing Na-ion conducting capacity of NASICON ceramic electrolyte Na3.4Zr2Si2.4P0.6O12 by NaF sintering aid[J]. J Mater Sci, 2022, 57: 11774-11782.
[39] SINGH K, CHAKRABORTY A, THIRUPATHI R, et al. Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries[J]. Ionics, 2022, 28(12): 5289-5319.
[40] SANDU V, ALDICA G V, GRIGOROSCUTA M A, et al. Effect of polysilane addition on spark plasma sintering and superconducting properties of MgB2 bulks[J]. Ceram Int, 2022, 48(21): 31914-31922.
[41] GRADY Z, FAN Z M, NDAYISHIMIYE A, et al. Design and sintering of all-solid-state composite cathodes with tunable mixed conduction properties via the cold sintering process[J]. ACS Appl Mater Interfaces, 2021, 13(40): 48071-48087.
[42] DA SILVA J G P, BRAM M, LAPTEV A M, et al. Sintering of a sodium-based NASICON electrolyte: A comparative study between cold, field assisted and conventional sintering methods[J]. J Eur Ceram Soc, 2019, 39(8): 2697-2702.
[43] GRADY Z M, TSUJI K, NDAYISHIMIYE A, et al. Densification of a solid-state NASICON sodium-ion electrolyte below 400 ℃ by cold sintering with a fused hydroxide solvent[J]. ACS Appl Energy Mater, 2020, 3(5): 4356-4366.
[45] CHEN Y Q, WANG Y X, ZHANG F, et al. Preparation of special ceramics by microwave heating: a review[J]. J Inorg Mater, 2022, 37(8): 841-852.
[46] ZHOU H Y, LI X, ZHU Y C, et al. Review of flash sintering with strong electric field[J]. High Volt, 2022, 7(1): 1-11.
[47] DAI J H, NIU Z T, ZUO Q, et al. Ion migration behavior and its interaction with sintering environment in cation conductor during flash sintering[J]. Ceram Int, 2022, 48(12): 16808-16812.
[48] YANG Z D, TANG B, XIE Z J, et al. NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries**[J]. Chemelectrochem, 2021, 8(6): 1035-1047.
[49] SUN Q, DAI L, TANG Y, et al. Designing a novel electrolyte Na3.2Hf2Si2.2P0.8O11.85F0.3 for all-solid-state Na-O2 batteries[J]. Small Methods, 2022, 6(7): 2200345.
[50] CEN S X, MEI W T, XING X Y, et al. Bi2O3-assisted sintering of Na3Zr2Si2PO12 electrolyte for solid-state sodium metal batteries[J]. Coatings, 2022, 12(11): 1774.
[51] WANG H, OKUBO K, INADA M, et al. Low temperature-densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering[J]. Solid State Ionics, 2018, 322: 54-60.
[52] WANG X X, LIU Z H, TANG Y H, et al. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-ion batteries[J]. J Power Sources, 2021, 481: 228924.
[53] ZHANG X, WANG J X, WEN J W, et al. Improvement of ionic conductivity and densification of Na3Zr2Si2PO12 solid electrolyte rapidly prepared by microwave sintering[J]. Ceram Int, 2022, 48(13): 18999-19005.
[54] REN K, CAO Y, CHEN Y, et al. Flash sintering of Na3Zr2(SiO4)2(PO4) solid-state electrolyte at furnace temperature of 700 ℃[J]. Scr Mater, 2020, 187: 384-389.
[55] XING Y Z, LI Y D, ZHANG C J. Low temperature preparation of dense and highly conductive NASICON electrolyte by solid-state reactive sintering[J]. Solid State Ionics, 2021, 373: 115811.
[56] JIANG P F, DU G Y, SHI Y S, et al. Ultrafast sintering of Na3Zr2Si2PO12 solid electrolyte for long lifespan solid-state sodium ion batteries[J]. Chem Eng J, 2023, 451: 138771.
[57] HE H T, SHAO G, ZHAO R, et al. Effects of oscillatory pressure mode on the sintering behavior of Al2O3W-ZrO2 composite in hot oscillatory pressing[J]. J Am Ceram Soc, 2022, 105(12): 7778-7784.
[58] JALALIAN-KHAKSHOUR A, PHILLIPS C O, JACKSON L, et al. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity[J]. J Mater Sci, 2020, 55(6): 2291-2302.
[59] RAO Y B, PATRO L N. Influence of synthesis methodology and excess Na on the ionic transport properties of natrium super ionic conductor, Na3Zr2Si2PO12[J]. Mater Lett, 2021, 301: 130267.
[60] MA Q L, TSAI C L, WEI X K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm-1 and its primary applications in symmetric battery cells[J]. J Mater Chem A, 2019, 7(13): 7766-7776.
[61] SCHUETT J, PESCHER F, NEITZEL-GRIESHAMMER S. The origin of high Na+ ion conductivity in Na1+xZr2SixP3-xO12 NASICON materials [J]. Phys Chem Chem Phys, 2022, 24(36): 22154-22167.
[62] DENG Z, MISHRA T P, MAHAYONI E, et al. Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes[J]. Nat Commun, 2022, 13(1): 4470.
[63] SUN F, XIANG Y X, SUN Q, et al. Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes[J]. Adv Funct Mater, 2021, 31(31): 2102129.
[64] YANG J, LIU G Z, AVDEEV M, et al. Ultrastable all-solid-state sodium rechargeable batteries[J]. ACS Energy Lett, 2020, 5(9): 2835-2841.
[65] HEO E, WANG J E, YUN J H, et al. Improving room temperature ionic conductivity of Na3-xKxZr2Si2PO12 solid-electrolytes: Effects of potassium substitution[J]. Inorg Chem, 2021, 60(15): 11147-11153.
[66] RAO Y B, BHARATHI K K, PATRO L N. Review on the synthesis and doping strategies in enhancing the Na ion conductivity of Na3Zr2Si2PO12 (NASICON) based solid electrolytes[J]. Solid State Ionics, 2021, 366-367: 115671.
[67] JOLLEY A G, COHN G, HITZ G T, et al. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12[J]. Ionics, 2015, 21(11): 3031-3038.
[68] THIRUPATHI R, OMAR S. A strategic co-doping approach using Sc3+ and Ce4+ toward enhanced conductivity in NASICON-type Na3Zr2Si2PO12[J]. J Phys Chem C, 2021, 125(50): 27723-27735.
[69] LI D L, SUN C, WANG C Z, et al. Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature [J]. Energy Storage Mater, 2023, 54: 403-409.
[70] LUO J, ZHAO G L, QIANG W J, et al. Synthesis of Na ion-electron mixed conductor Na3Zr2Si2PO12 by doping with transition metal elements (Co, Fe, Ni)[J]. J Am Ceram Soc, 2022, 105(5): 3428-3437.
[71] WANG X X, CHEN J J, MAO Z Y, et al. Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity[J]. Chem Eng J, 2022, 427: 130899.
[72] WANG C Z, GAO J J, GAO X W, et al. Report stabilizing the Na/Na3Zr2Si2PO12 interface through intrinsic feature regulation of Na3Zr2Si2PO12[J]. Cell Rep Phys Sci, 2021, 2(7): 100478.
[73] WANG Q, YU C, LI L P, et al. Sc-doping in Na3Zr2Si2PO12 electrolytes enables preeminent performance of solid-state sodium batteries in a wide temperature range[J]. Energy Storage Mater, 2023, 54: 135-145.
[74] CHEN D, LUO F, ZHOU W C, et al. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J]. J Alloys Compd, 2018, 757: 348-355.
[75] MA Q L, TIETZ F. Solid-state electrolyte materials for sodium batteries: Towards practical applications[J]. Chemelectrochem, 2020, 7(13): 2693-2713.
[76] WANG X X, MEI W T, CHEN J J, et al. Rare earth oxide-assisted sintered NASICON electrolyte composed of a phosphate grain boundary phase with low electronic conductivity[J]. ACS Appl Energy Mater, 2021, 5(1): 777-783.
[77] LI W K, ZHAO N, BI Z J, et al. Insight into synergetic effect of bulk doping and boundary engineering on conductivity of NASICON electrolytes for solid-state Na batteries[J]. Appl Phys Lett, 2022, 121(3): 033901.
[78] MIAO R J, CAO X G, WANG W G, et al. Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte[J]. Ceram Int, 2021, 47(12): 17455-17462.
[79] PAL S K, SAHA R, KUMAR G V, et al. Designing high ionic conducting NASICON-type Na3Zr2Si2PO12 solid-electrolytes for Na-ion batteries[J]. J Phys Chem C, 2020, 124(17): 9161-9169.
[81] CAO X G, ZHANG X H, TAO T, et al. Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J]. Ceram Int, 2020, 46(6): 8405-8412.
[82] SANTHOSHKUMAR B, CHOUDHARY M B, BERA A K, et al. High Na+ conducting Na3Zr2Si2PO12/Na2Si2O5 composites as solid electrolytes for Na+ batteries[J]. J Am Ceram Soc, 2022, 105(7): 5011-5019.
[83] GAO Z H, YANG J Y, LI G C, et al. TiO2 as second phase in Na3Zr2Si2PO12 to suppress dendrite growth in sodium metal solid-state batteries[J]. Adv Energy Mater, 2022, 12(9): 2103607.
[84] SUN Z, LI L, SUN C, et al. Active control of interface dynamics in NASICON-based rechargeable solid-state sodium batteries[J]. Nano Lett, 2022, 22(17): 7187-7194.
[85] LALERE F, LERICHE J B, COURTY M, et al. An all-solid state NASICON sodium battery operating at 200 ℃[J]. J Power Sources, 2014, 247: 975-980.
[86] ZHANG Z Z, ZHANG Q H, SHI J A, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Adv Energy Mater, 2017, 7(4): 1601196.
[87] MARTINEZ-CISNEROS C S, PANDIT B, ANTONELLI C, et al. Development of sodium hybrid quasi-solid electrolytes based on porous NASICON and ionic liquids[J]. J Eur Ceram Soc, 2021, 41(15): 7723-7733.
[88] CUI G J, WANG H, YU F P, et al. Scalable synthesis of Na3V2(PO4)3/C with high safety and ultrahigh-rate performance for sodium-ion batteries [J]. Chin J Chem Eng, 2022, 46: 280-286.
[89] KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chem Rev, 2020, 120(15): 7745-7794.
[90] GROSS M M, SMALL L J, PERETTI A S, et al. Tin-based ionic chaperone phases to improve low temperature molten sodium-NaSICON interfaces[J]. J Mater Chem A, 2020, 8(33): 17012-17018.
[91] WANG X X, CHEN J J, MAO Z Y, et al. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery[J]. J Mater Chem A, 2021, 9(29): 16039-16045.
[92] FU H Y, YIN Q Y, HUANG Y, et al. Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery[J]. ACS Mater Lett, 2020, 2(2): 127-132.
[93] MA Q L, ORTMANN T, YANG A K, et al. Enhancing the dendrite tolerance of NaSICON electrolytes by suppressing edge growth of Na electrode along ceramic surface[J]. Adv Energy Mater, 2022, 12(40): 2201680.
[94] CAI S, MENG W, TIAN H, et al. Artificial porous heterogeneous interface for all-solid-state sodium ion battery[J]. J Colloid Interface Sci, 2023, 632(Pt A): 179-185.
[95] TIAN H Q, DAI L, WANG L, et al. Interface stability control by an electron-blocking interlayer for dendrite-free and long-cycle solid sodium-ion batteries[J]. Acs Sustain Chem Eng, 2022, 10(23): 7500-7507.
[96] KUTSUZAWA D, KOBAYASHI T, KOMIYA S. Flux-assisted low-temperature fabrication of highly durable all-oxide solid-state sodium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(4): 4025-4028.
[97] SHEN L, DENG S, JIANG R, et al. Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries[J]. Energy Storage Mater, 2022, 46: 175-181.
[98] NOI K, NAGATA Y, HAKARI T, et al. Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19605-19614.
[99] RAN L, LI M, COOPER E, et al. Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design[J]. Energy Storage Mater, 2021, 41: 8-13.
[100] KEHNE P, GUHL C, MA Q, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance[J]. J Power Sources, 2019, 409: 86-93.
[101] ZHAO Y, GONCHAROVA L V, ZHANG Q, et al. Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Lett, 2017, 17(9): 5653-5659.
[102] LUO W, LIN C F, ZHAO O, et al. Ultrathin surface coating enables the stable sodium metal anode[J]. Adv Energy Mater, 2017, 7(2): 1601526.
[103] LAN T, TSAI C L, TIETZ F, et al. Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials[J]. Nano Energy, 2019, 65: 104040.