• Journal of Atmospheric and Environmental Optics
  • Vol. 17, Issue 1, 92 (2022)
Jiacheng ZHOU1、2、*, Xuezhe XU1, Bo FANG1, Yang ZHANG1, Weixiong ZHAO1, and Weijun ZHANG1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2022.01.006 Cite this Article
    ZHOU Jiacheng, XU Xuezhe, FANG Bo, ZHANG Yang, ZHAO Weixiong, ZHANG Weijun. Research progress of methods of aerosol optical hygroscopic properties measurement[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 92 Copy Citation Text show less
    References

    [1] Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry (Second Edition) [M]. Beijing: Higher Education Press, 2006.

    [2] Nel A. Air pollution-related illness: Effects of particles [J]. Science, 2005, 308(5723): 804-806.

    [3] Stocker T F, Qin D, Plattner G K, et al. IPCC. In Climate Change 2013-The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013.

    [4] Covert D S, Charlson R J, Ahlquist N C. A study of the relationship of chemical composition and humidity to light scattering by aerosols [J]. Journal of Applied Meteorology, 1972, 11(6): 968-976.

    [5] Tang I N, Munkelwitz H R. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance [J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D9): 18801-18808.

    [6] Zhang R, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): 10291-10296.

    [7] Khalizov A F, Xue H, Wang L, et al. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid [J]. The Journal of Physical Chemistry A, 2009, 113(6): 1066-1074.

    [8] Xue H X, Khalizov A F, Wang L, et al. Effects of dicarboxylic acid coating on the optical properties of soot [J]. Physical Chemistry Chemical Physics, 2009, 11(36): 7869-7875.

    [9] Liu X G, Zhang Y H, Cheng Y F, et al. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign [J]. Atmospheric Environment, 2012, 60: 59-67.

    [10] Cheng Y F, Wiedensohler A, Eichler H, et al. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study [J]. l Atmospheric Environment, 2008, 42(25): 6373-6397.

    [11] Garland R M, Ravishankara A R, Lovejoy E R, et al. Parameterization for the relative humidity dependence of light extinction: Organic-ammonium sulfate aerosol [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D19): D19303.

    [12] Zieger P, Fierz-Schmidhauser R, Weingartner E, et al. Effects of relative humidity on aerosol light scattering: Results from different European sites [J]. Atmospheric Chemistry and Physics, 2013, 13(21): 10609-10631.

    [13] Lack D A, Quinn P K, Massoli P, et al. Relative humidity dependence of light absorption by mineral dust after long-range atmospheric transport from the Sahara [J]. Geophysical Research Letters, 2009, 36(24): L24805.

    [14] Zhou J C, Xu X Z, Zhao W X, et al. Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer [J]. Atmospheric Measurement Techniques, 2020, 13(5): 2623-2634.

    [15] Zhang L, Sun J Y, Shen X J, et al. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China [J]. Atmospheric Chemistry and Physics, 2015, 15(14): 8439-8454.

    [16] Tang M J, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259.

    [17] Tang M J, Chan C K, Li Y J, et al. A review of experimental techniques for aerosol hygroscopicity studies [J]. Atmospheric Chemistry and Physics, 2019, 19(19): 12631-12686.

    [18] Zhao C S, Yu Y L, Kuang Y, et al. Recent progress of aerosol light-scattering enhancement factor studies in China [J]. Advances in Atmospheric Sciences, 2019, 36(9): 1015-1026.

    [19] Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832.

    [20] Zheng X H, Hu C J, Pan G, et al. Hygroscopicity of SOA formed by ozonolysis of styrene [J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 254-262.

    [21] Qian X D, Zhang Q L, Xu X Z, et al. Development of a volatility hygroscopic tandem differential mobility analyzer (VH-TDMA) for the measurement of aerosol thermal and hygroscopic properties [J]. China Environmental Science, 2017, 37(4): 1269-1275.

    [22] Zhang L. Observation and Model Study of Relative Humidity Effects on Aerosol Light Scattering at a Regional Backgound Site in the Yangtze Delta Region [D]. Beijing: University of Chinese Academy of Sciences, 2017.

    [23] Liu H J, Zhao C S. Design of a humidified nephelometer system with high time resolution [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(6): 999-1004.

    [24] Chen J, Zhao C S, Ma N, et al. Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain [J]. Atmospheric Chemistry and Physics, 2014, 14(15): 8105-8118.

    [25] Fierz-Schmidhauser R, Zieger P, Wehrle G, et al. Measurement of relative humidity dependent light scattering of aerosols [J]. Atmospheric Measurement Techniques, 2010, 3(1): 39-50.

    [26] Brem B T, Mena Gonzalez F C, Meyers S R, et al. Laboratory-measured optical properties of inorganic and organic aerosols at relative humidities up to 95% [J]. Aerosol Science and Technology, 2012, 46(2): 178-190.

    [27] Baynard T, Garland R M, Ravishankara A R, et al. Key factors influencing the relative humidity dependence of aerosol light scattering [J]. Geophysical Research Letters, 2006, 33(6): L06813.

    [28] Massoli P, Bates T S, Quinn P K, et al. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing [J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D00F07.

    [29] Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy [J]. Aerosol Science and Technology, 2011, 45(11): 1305-1318.

    [30] Michel Flores J, Bar-Or R Z, Bluvshtein N, et al. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to optical properties [J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5511-5521.

    [31] Zhao W, Xu X, Fang B, et al. Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity [J]. Applied Optics, 2017, 56(11): E16-E22.

    [32] Carrico C M, Rood M J, Ogren J A, et al. Aerosol optical properties at Sagres, Portugal during ACE-2 [J]. Tellus B, 2000, 52(2): 694-715.

    [33] Yan P, Pan X L, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient: A comparative analysis between urban and suburban sites at winter in Beijing [J]. Particuology, 2009, 7(1): 52-60.

    [34] Sun J Y, Zhang L, Shen X J, et al. A review of the effects of relative humidity on aerosol scattering properties [J]. Acta Meteorologica Sinica, 2016, 74(5): 672-682.

    [35] Titos G, Cazorla A, Zieger P, et al. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources [J]. Atmospheric Environment, 2016, 141: 494-507.

    [36] Pan X L, Yan P, Tang J, et al. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city [J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7519-7530.

    [37] Tao J C, Zhao C S, Kuang Y, et al. A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system [J]. Atmospheric Measurement Techniques, 2018, 11(2):895-906.

    [38] Kuang Y, Zhao C S, Tao J C, et al. A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system [J]. Atmospheric Chemistry and Physics, 2017, 17(11): 6651-6662.

    [39] Zhao G, Zhao C S, Kuang Y, et al. Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system [J]. Atmospheric Chemistry and Physics, 2018, 18(12): 9049-9060.

    [40] Kuang Y, Zhao C S, Zhao G, et al. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system [J]. Atmospheric Measurement Techniques, 2018, 11(5): 2967-2982.

    [41] Kuang Y, Tao J C, Xu W Y, et al. Calculating ambient aerosol surface area concentrations using aerosol light scattering enhancement measurements [J]. Atmospheric Environment, 2019, 216: 116919.

    [42] Arnott W P, Moosmüller H, Sheridan P J, et al. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): 4034.

    [43] Langridge J M, Richardson M S, Lack D A, et al. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity [J]. Aerosol Science and Technology, 2013, 47(11): 1163-1173.

    [44] Radney J G, Zangmeister C D. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy [J]. Analytical Chemistry, 2015, 87(14): 7356-7363.

    [45] Thompson J E, Barta N, Policarpio D, et al. A fixed frequency aerosol albedometer [J]. Optics Express, 2008, 16(3): 2191-2205.

    [46] Zhao W, Xu X, Dong M, et al. Development of a cavity-enhanced aerosol albedometer [J]. Atmospheric Measurement Techniques, 2014, 7(8): 2551-2566.

    [47] Xu X Z, Zhao W X, Fang B, et al. Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols [J]. Optics Express, 2018, 26(25): 33484-33500.

    [48] Onasch T B, Massoli P, Kebabian P L, et al. Single scattering albedo monitor for airborne particulates [J]. Aerosol Science and Technology, 2015, 49(4): 267-279.

    [49] Wei Y, Ma L, Cao T, et al. Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section [J]. Analytical Chemistry, 2013, 85(19): 9181-9188.

    [50] Carrico C M, Capek T J, Gorkowski K J, et al. Humidified single-scattering albedometer (H-CAPS-PMSSA): Design, data analysis, and validation [J]. Aerosol Science and Technology, 2021, 55(7): 749-768.

    [51] Markowicz K M, Flatau P J, Quinn P K, et al. Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8662.

    ZHOU Jiacheng, XU Xuezhe, FANG Bo, ZHANG Yang, ZHAO Weixiong, ZHANG Weijun. Research progress of methods of aerosol optical hygroscopic properties measurement[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 92
    Download Citation