• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 6, 2016 (2024)
HAN Jiajun1, WEN Min1, ZHENG Qilin1, YUAN Weiwei1..., CHEN Kang1, LIAO Junjie11 and YAO Hurong1,2,*|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230870 Cite this Article
    HAN Jiajun, WEN Min, ZHENG Qilin, YUAN Weiwei, CHEN Kang, LIAO Junjie1, YAO Hurong. High Performance Na-Based P2-Type Cathodes Designed by Na Sites Modulation[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2016 Copy Citation Text show less
    References

    [1] JIANG Hedong, SUN Linlin, ZHU Honglin, et al. J Chin Ceram Soc, 2023, 51(1): 235-247.

    [2] GAN Lu, YAO Hurong. J Chin Ceram Soc, 2022, 50(1): 148-157.

    [3] LIN Yehong, WANG Lili, HUANG Zhigao. J Fujian Norm Univ Nat Sci Ed, 2020, 36(2): 61-69.

    [4] CHEN Weidong, LUO Huangjian, ZHAO Yong, et al. J Fujian Norm Univ Nat Sci Ed, 2023, 39(2): 80-85.

    [5] YU Wenhua, ZHAO Liuyang, WANG Yanyan, et al. J Chin Ceram Soc, 2022, 50(11): 3040-3069.

    [6] SU Jiawen, LIU Limin, ZHOU Xiaoliang, et al. J Chin Ceram Soc, 2023, 51(6): 1611-1625.

    [7] WANG Can, CAO Shicheng, LI Afei, et al. J Chin Ceram Soc, 2023, 51(7): 1670-1679.

    [8] WANG K, ZHUO H X, WANG J T, et al. Recent advances in Mn-rich layered materials for sodium-ion batteries[J]. Adv Funct Mater, 2023, 33(13): 2212607.

    [9] ZHAO Y S, LIU Q, ZHAO X H, et al. Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies[J]. Mater Today, 2023, 62: 271-295.

    [10] YAO H R, ZHENG L T, XIN S, et al. Air-stability of sodium-based layered-oxide cathode materials[J]. Sci China Chem, 2022, 65(6): 1076-1087.

    [11] GAN L, YUAN X G, HAN J J, et al. Highly symmetrical six-transition metal ring units promising high air-stability of layered oxide cathodes for sodium-ion batteries[J]. Adv Funct Mater, 2023, 33(7): 2209026.

    [12] XI Y M, LU Y C. Rapid synthesis of sodium-rich Prussian white for Sodium-ion battery via a bottom-up approach[J]. Chem Eng J, 2021, 405: 126688.

    [13] KATCHO N A, CARRASCO J, SAUREL D, et al. Origins of bistability and Na ion mobility difference in P2-and O3- Na2/3Fe2/3Mn1/3O2 cathode polymorphs[J]. Adv Energy Mater, 2017, 7(1): 1601477.

    [14] LIU Y H, FANG X, ZHANG A Y, et al. Layered P2?Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification[J]. Nano Energy, 2016, 27: 27-34.

    [15] ZHOU Y N, WANG P F, NIU Y B, et al. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019, 55: 143-150.

    [16] ZHANG S G, LI X Y, SU Y, et al. Four-In-one strategy to boost the performance of Nax[Ni, Mn]O2[J]. Adv Funct Mater, 2023, 33(36): 2301568.

    [17] LIU S Y, WAN J, OU M Y, et al. Regulating Na occupation in P2-type layered oxide cathode for all-climate sodium-ion batteries[J]. Adv Energy Mater, 2023, 13(11): 2203521.

    [18] WANG Q C, SHADIKE Z, LI X L, et al. Tuning sodium occupancy sites in P2-layered cathode material for enhancing electrochemical performance[J]. Adv Energy Mater, 2021, 11(13): 2003455.

    [19] ZHANG L, WANG J, SCHUCK G, et al. Stabilizing P3-type oxides as cathodes for high-rate and long-life sodium ion batteries by disordered distribution of transition metals[J]. Small Meth, 2020, 4(10): 2000422.

    [20] XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Adv Funct Mater, 2020, 30(30): 2001334.

    [21] YUAN X G, GUO Y J, GAN L, et al. A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries[J]. Adv Funct Mater, 2022, 32(17): 2111466.

    [22] ZHAO C L, YAO Z P, WANG Q D, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes[J]. J Am Chem Soc, 2020, 142(12): 5742-5750.

    [23] ZHANG Xiaojun, Li Jiale, Qiu Wujie, et al. J. Inorg. Mater. , 2021, 36(6): 623?628.

    [24] SUN L Q, XIE Y Y, LIAO X Z, et al. Insight into Ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application[J]. Small, 2018, 14(21): 1704523.

    [25] YANG Q, WANG P F, GUO J Z, et al. Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2-O2 phase transition toward high-performance sodium-ion battery[J]. ACS Appl Mater Interfaces, 2018, 10(40): 34272-34282.

    [26] LIU Q N, HU Z, CHEN M Z, et al. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage[J]. J Mater Chem A, 2019, 7(15): 9215-9221.

    [27] WANG P F, YOU Y, YIN Y X, et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries[J]. Angew Chem, 2016, 128(26): 7571-7575.

    [28] WANG Q C, HU E Y, PAN Y, et al. Utilizing Co2+/Co3+ redox couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 cathode for sodium-ion batteries[J]. Adv Sci, 2017, 4(11): 1700219.

    [29] LI Y M, YANG Z Z, XU S Y, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Adv Sci, 2015, 2(6): 1500031.

    [30] DANG R B, CHEN M M, LI Q, et al. Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: Suppressing Na+/vacancy ordering and P2-O2 phase transition[J]. ACS Appl Mater Interfaces, 2019, 11(1): 856-864.

    [31] YAO H R, LV W J, YUAN X G, et al. New insights to build Na+/vacancy disordering for high-performance P2-type layered oxide cathodes[J]. Nano Energy, 2022, 97: 107207.

    [32] ZUO W H, QIU J M, HONG C Y, et al. Structure-performance relationship of Zn2+ substitution in P2-Na0.66Ni0.33Mn0.67O2 with different Ni/Mn ratios for high-energy sodium-ion batteries[J]. ACS Appl Energy Mater, 2019, 2(7): 4914-4924.

    [33] ZHENG X B, LI P, ZHU H J, et al. New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries[J]. Energy Storage Mater, 2018, 15: 257-265.

    [34] CAO D P, YIN C L, SHI D R, et al. Cubic perovskite fluoride as open framework cathode for Na-ion batteries[J]. Adv Funct Mater, 2017, 27(28): 1701130.

    [35] LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability[J]. Phys Chem Chem Phys, 2013, 15(9): 3304-3312.

    [36] GAO X, CHEN J, LIU H Q, et al. Copper-substituted NaxMO2 (M=Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation[J]. Chem Eng J, 2021, 406: 126830.

    [37] LI J J, WEI H L, PENG Y, et al. A multifunctional self-healing G-PyB/KCl hydrogel: Smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein[J]. Chem Commun, 2019, 55(55): 7922-7925.

    [38] ZHANG Y, WU M M, MA J W, et al. Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: Oxygen redox chemistry and oxygen release suppression[J]. ACS Cent Sci, 2020, 6(2): 232-240.

    [39] LIU Y C, SHEN Q Y, ZHAO X D, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes[J]. Adv Funct Mater, 2020, 30(6): 1907837.

    HAN Jiajun, WEN Min, ZHENG Qilin, YUAN Weiwei, CHEN Kang, LIAO Junjie1, YAO Hurong. High Performance Na-Based P2-Type Cathodes Designed by Na Sites Modulation[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2016
    Download Citation