• Chinese Journal of Lasers
  • Vol. 51, Issue 16, 1602301 (2024)
Hongkang Huang1、3, Xia Luo1、*, Yuhong Dai2、3, Xin He1, Yunzhong Liu2、**, Bensheng Huang1, and Zhou Fan1
Author Affiliations
  • 1School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • 2National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China
  • 3Chengdu Xinshan Aerospace Technology Co., Ltd., Chengdu 610500, Sichuan, China
  • show less
    DOI: 10.3788/CJL231156 Cite this Article Set citation alerts
    Hongkang Huang, Xia Luo, Yuhong Dai, Xin He, Yunzhong Liu, Bensheng Huang, Zhou Fan. Parameters and Microstructure Evolution of TiC/TC4 Composites Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2024, 51(16): 1602301 Copy Citation Text show less
    SEM and EDS images of composite powder. (a)(b) SEM images of powder; (c) size distribution of composite powder particles; (d) EDS images of powder
    Fig. 1. SEM and EDS images of composite powder. (a)(b) SEM images of powder; (c) size distribution of composite powder particles; (d) EDS images of powder
    Scanning strategy
    Fig. 2. Scanning strategy
    Influence of volume energy density on forming quality and relative density. (a) Relationship between forming quality and volume energy density; (b) relationship between relative density and volume energy density
    Fig. 3. Influence of volume energy density on forming quality and relative density. (a) Relationship between forming quality and volume energy density; (b) relationship between relative density and volume energy density
    Metallographic pictures of formed samples at different volume energy density values (before corrosion). (a)‒(c) Cross section; (d)‒(f) longitudinal section
    Fig. 4. Metallographic pictures of formed samples at different volume energy density values (before corrosion). (a)‒(c) Cross section; (d)‒(f) longitudinal section
    XRD pattern of formed samples at different volume energy density values. (a) XRD pattern; (b) standard 2θ location of α-Ti
    Fig. 5. XRD pattern of formed samples at different volume energy density values. (a) XRD pattern; (b) standard 2θ location of α-Ti
    Metallographic pictures of formed samples at different volume energy density values (after corrosion). (a)‒(d) Cross section; (e)‒(h) longitudinal section
    Fig. 6. Metallographic pictures of formed samples at different volume energy density values (after corrosion). (a)‒(d) Cross section; (e)‒(h) longitudinal section
    SEM images and local magnification images of SLM formed samples at different volume energy density values. (a)‒(l) Cross section; (m)‒(t) longitudinal section
    Fig. 7. SEM images and local magnification images of SLM formed samples at different volume energy density values. (a)‒(l) Cross section; (m)‒(t) longitudinal section
    High magnification SEM images of SLM formed samples at different volume energy density values. (a)‒(d) Cross section; (e)‒(h) longitudinal section
    Fig. 8. High magnification SEM images of SLM formed samples at different volume energy density values. (a)‒(d) Cross section; (e)‒(h) longitudinal section
    Effect of volume energy density on micro-hardness of TiC/TC4 composites
    Fig. 9. Effect of volume energy density on micro-hardness of TiC/TC4 composites
    EBSD analysis results. (a)‒(c) Cross-section IPF; (d)‒(f) longitudinal section IPF
    Fig. 10. EBSD analysis results. (a)‒(c) Cross-section IPF; (d)‒(f) longitudinal section IPF
    EBSD analysis results. (a)(b) Band contrast diagrams; (c)(d) phase diagrams
    Fig. 11. EBSD analysis results. (a)(b) Band contrast diagrams; (c)(d) phase diagrams
    EBSD results of sample when volume energy density of 85 J/mm3. (a) Longitudinal section IPF; (b) polar diagrams of β-Ti and α-Ti; (c) polar diagrams of β-Ti, α-Ti, and TiC at grain boundary; (d) polar diagrams of transgranular TiC and α-Ti
    Fig. 12. EBSD results of sample when volume energy density of 85 J/mm3. (a) Longitudinal section IPF; (b) polar diagrams of β-Ti and α-Ti; (c) polar diagrams of β-Ti, α-Ti, and TiC at grain boundary; (d) polar diagrams of transgranular TiC and α-Ti
    Microstructure evolution diagrams of TiC/TC4 in cross-sectional and longitudinal sections. (a)(b) Diagrams of powder melting; (c)(d) schematics of cross section; (e)(f) schematics of longitudinal section
    Fig. 13. Microstructure evolution diagrams of TiC/TC4 in cross-sectional and longitudinal sections. (a)(b) Diagrams of powder melting; (c)(d) schematics of cross section; (e)(f) schematics of longitudinal section
    No.Laser power /WScanning speed /(mm/s)Hatch spacing /mmVolume energy density /(J/mm3
    12908500.0885
    22909500.1061
    329010500.1246
    429011500.1436
    529012500.1629
    63108500.1073
    73109500.1254
    831010500.1442
    931011500.1634
    1031012500.0862
    113308500.1265
    123309500.1450
    1333010500.1639
    1433011500.0872
    1533012500.1053
    163508500.1459
    173509500.1646
    1835010500.0883
    1935011500.1061
    2035012500.1247
    213708500.1654
    223709500.0897
    2337010500.1070
    2437011500.1254
    2537012500.1442
    Table 1. Orthogonal experimental parameters of TiC/TC4 composites
    Hongkang Huang, Xia Luo, Yuhong Dai, Xin He, Yunzhong Liu, Bensheng Huang, Zhou Fan. Parameters and Microstructure Evolution of TiC/TC4 Composites Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2024, 51(16): 1602301
    Download Citation