• Frontiers of Optoelectronics
  • Vol. 8, Issue 2, 141 (2015)
Jun LIU*
Author Affiliations
  • OptiMedic Technologies, Inc., Foshan 528200, China
  • show less
    DOI: 10.1007/s12200-014-0415-5 Cite this Article
    Jun LIU. Two-photon microscopy in pre-clinical and clinical cancer research[J]. Frontiers of Optoelectronics, 2015, 8(2): 141 Copy Citation Text show less
    References

    [1] Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 2003, 300(5628): 2061–2065

    [2] Yildiz A, Park H, Safer D, Yang Z, Chen L Q, Selvin P R, Sweeney H L. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. The Journal of Biological Chemistry, 2004, 279(36): 37223–37226

    [3] Myong S, Rasnik I, Joo C, Lohman T M, Ha T. Repetitive shuttling of a motor protein on DNA. Nature, 2005, 437(7063): 1321–1325

    [4] Tan E, Wilson T J, Nahas M K, Clegg R M, Lilley D M J, Ha T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9308– 9313

    [5] Wang Y, Shyy J Y J, Chien S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annual Review of Biomedical Engineering, 2008, 10(1): 1–38

    [6] Perry S W, Burke R M, Brown E B. Two-photon and second harmonic microscopy in clinical and translational cancer research. Annals of Biomedical Engineering, 2012, 40(2): 277–291

    [7] Nguyen Q T, Olson E S, Aguilera T A, Jiang T, Scadeng M, Ellies L G, Tsien R Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4317–4322

    [8] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951): 73–76

    [9] Fang H, Declerck Y A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Research, 2013, 73(16): 4965–4977

    [10] Cukierman E, Pankov R, Stevens D R, Yamada K M. Taking cellmatrix adhesions to the third dimension. Science, 2001, 294(5547): 1708–1712

    [11] Swartz M A, Iida N, Roberts E W, Sangaletti S, Wong M H, Yull F E, Coussens L M, DeClerck Y A. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Research, 2012, 72(10): 2473–2480

    [12] Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge J S, Polverini P J, Mooney D J. Engineering tumors with 3D scaffolds. Nature Methods, 2007, 4(10): 855–860

    [13] Kenny P A, Lee G Y, Myers C A, Neve RM, Semeiks J R, Spellman P T, Lorenz K, Lee E H, Barcellos-Hoff M H, Petersen OW, Gray J W, Bissell M J. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Molecular Oncology, 2007, 1(1): 84–96

    [14] Wang F, Weaver V M, Petersen O W, Larabell C A, Dedhar S, Briand P, Lupu R, Bissell M J. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in threedimensional basement membrane breast cultures: a different perspective in epithelial biology. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 14821–14826

    [15] Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in selfassembled peptide-amphiphile nanofibers. Biomaterials, 2006, 27 (22): 4079–4086

    [16] Jain R K, Duda D G, Clark JW, Loeffler J S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clinical Practice Oncology, 2006, 3(1): 24–40

    [17] Benninger R K P, Hao M, Piston D W. Multi-photon excitation imaging of dynamic processes in living cells and tissues. In: Amara S G, Fleischmann B, Hebert S C, LedererWJ, Miyajima A, Zechner R, eds. Reviews of Physiology, Biochemistry and Pharmacology, 2008, 160: 71–92

    [18] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nature Methods, 2005, 2(12): 932–940

    [19] Skala M C, Riching K M, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri K W, White J G, Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19494–19499

    [20] Walsh A J, Cook R S, Manning H C, Hicks D J, Lafontant A, Arteaga C L, Skala M C. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Research, 2013, 73(20): 6164–6174

    [21] Lim C S, Cho B R. Two-photon probes for biomedical applications. BMB Reports, 2013, 46(4): 188–194

    [22] Chudakov D M, Matz M V, Lukyanov S, Lukyanov K A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 2010, 90(3): 1103–1163

    [23] Le Dévédec S E, Lalai R, Pont C, de Bont H, van de Water B. Twophoton intravital multicolor imaging combined with inducible gene expression to distinguish metastatic behavior of breast cancer cells in vivo. Molecular Imaging and Biology, 2011, 13(1): 67–77

    [24] Mahou P, Zimmerley M, Loulier K, Matho K S, Labroille G, Morin X, Supatto W, Livet J, Débarre D, Beaurepaire E. Multicolor twophoton tissue imaging by wavelength mixing. Nature Methods, 2012, 9(8): 815–818

    [25] Shcherbo D, Merzlyak E M, Chepurnykh T V, Fradkov A F, Ermakova G V, Solovieva E A, Lukyanov K A, Bogdanova E A, Zaraisky A G, Lukyanov S, Chudakov D M. Bright far-red fluorescent protein for whole-body imaging. Nature Methods, 2007, 4(9): 741–746

    [26] Shcherbo D, Murphy C S, Ermakova G V, Solovieva E A, Chepurnykh T V, Shcheglov A S, Verkhusha V V, Pletnev V Z, Hazelwood K L, Roche P M, Lukyanov S, Zaraisky A G, Davidson M W, Chudakov D M. Far-red fluorescent tags for protein imaging in living tissues. The Biochemical Journal, 2009, 418(3): 567–574

    [27] Giepmans B N G, Adams S R, Ellisman M H, Tsien R Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771): 217–224

    [28] Cahalan M D, Parker I, Wei S H, Miller M J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Reviews. Immunology, 2002, 2(11): 872–880

    [29] Toubai T, Sun Y, Luker G, Liu J, Luker K E, Tawara I, Evers R, Liu C, Mathewson N, Malter C, Nieves E, Choi S, Murphy K M, Reddy P. Host-derived CD8+ dendritic cells are required for induction of optimal graft-versus-tumor responses after experimental allogeneic bone marrow transplantation. Blood, 2013, 121(20): 4231–4241

    [30] Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. Journal of Microscopy, 2002, 208(Pt 2): 108–115

    [31] Liu B, Hu X L, Liu J, Zhao Y D, Huang Z L. Synthesis and photophysical properties of novel pyrimidine-based two-photon absorption chromophores. Tetrahedron Letters, 2007, 48(34): 5958– 5962

    [32] Liu J, Chu J, Zhu H, Xu L, Zhang Z, Zeng S, Huang Z. A feasible method for comparing the power dependent photostability of fluorescent proteins. Chinese Optics Letters, 2008, 6(12): 941–943

    [33] Liu J, Pei Z, Wang L, Zhang Z, Zeng S, Huang Z L. A straightforward and quantitative approach for characterizing the photoactivation performance of optical highlighter fluorescent proteins. Applied Physics Letters, 2010, 97(20): 203701

    [34] Zou L, Liu Z, Yan X, Liu Y, Fu Y, Liu J, Huang Z, Chen X, Qin J. Star-shaped D-pi-A molecules containing a 2,4,6-Tri(thiophen-2- yl)-1,3,5-triazine unit: synthesis and two-photon absorption properties. European Journal of Organic Chemistry, 2009, 2009(32): 5587–5593

    [35] Wagner R. Erl uterungstaflen zur Physiologie und Entwicklungsgeschichte. Germany, Leipzig: Leopold Voss, 1839

    [36] Wood S Jr. Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Archives of Pathology, 1958, 66(4): 550–568

    [37] Chishima T, Miyagi Y, Wang X, Yamaoka H, Shimada H, Moossa A R, Hoffman R M. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Research, 1997, 57(10): 2042–2047

    [38] Farina K L,Wyckoff J B, Rivera J, Lee H, Segall J E, Condeelis J S, Jones J G. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Research, 1998, 58(12): 2528–2532

    [39] MacDonald I C, Schmidt E E, Morris V L, Chambers A F, Groom A C. Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. Microvascular Research, 1992, 44(2): 185–199

    [40] Araya R, Eisenthal K B, Yuste R. Dendritic spines linearize the summation of excitatory potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (49): 18799–18804

    [41] Araya R, Jiang J, Eisenthal K B, Yuste R. The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47): 17961– 17966

    [42] Ngo-Anh T J, Bloodgood B L, Lin M, Sabatini B L, Maylie J, Adelman J P. SK channels and NMDA receptors form a Ca2+- mediated feedback loop in dendritic spines. Nature Neuroscience, 2005, 8(5): 642–649

    [43] Matsumoto-Ida M, Akao M, Takeda T, Kato M, Kita T. Real-time 2- photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation, 2006, 114(14): 1497–1503

    [44] Gupta A, Rhodes G J, Berg D T, Gerlitz B, Molitoris B A, Grinnell B W. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin

    [45] American Journal of Physiology, Renal Physiology, 2007, 293(1): F245–F254

    [46] Nishimura N, Schaffer C B, Friedman B, Lyden P D, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 365–370

    [47] Schwickert T A, Lindquist R L, Shakhar G, Livshits G, Skokos D, Kosco-Vilbois M H, Dustin M L, Nussenzweig M C. In vivo imaging of germinal centres reveals a dynamic open structure. Nature, 2007, 446(7131): 83–87

    [48] Boissonnas A, Fetler L, Zeelenberg I S, Hugues S, Amigorena S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. The Journal of Experimental Medicine, 2007, 204(2): 345–356

    [49] Jain R K. Determinants of tumor blood flow: a review. Cancer Research, 1988, 48(10): 2641–2658

    [50] Brown E B, Campbell R B, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain R K. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine, 2001, 7(7): 864–868

    [51] Stroh M, Zimmer J P, Duda D G, Levchenko T S, Cohen K S, Brown E B, Scadden D T, Torchilin V P, Bawendi M G, Fukumura D, Jain R K. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 2005, 11(6): 678– 682

    [52] Wang W, Wyckoff J B, Frohlich V C, Oleynikov Y, Hüttelmaier S, Zavadil J, Cermak L, Bottinger E P, Singer R H, White J G, Segall J E, Condeelis J S. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Research, 2002, 62(21): 6278–6288

    [53] Sahai E, Wyckoff J, Philippar U, Segall J E, Gertler F, Condeelis J. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnology, 2005, 5(1): 14

    [54] Condeelis J, Segall J E. Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 2003, 3(12): 921–930

    [55] Wang W, Wyckoff J B, Goswami S, Wang Y, Sidani M, Segall J E, Condeelis J S. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Research, 2007, 67(8): 3505–3511

    [56] Wolf K, Mazo I, Leung H, Engelke K, von Andrian U H, Deryugina E I, Strongin A Y, Br cker E B, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 2003, 160(2): 267–277

    [57] Wyckoff J B, Jones J G, Condeelis J S, Segall J E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Research, 2000, 60(9): 2504–2511

    [58] Wyckoff J B, Pinner S E, Gschmeissner S, Condeelis J S, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease- independent tumor-cell invasion in vivo. Current Biology: CB, 2006, 16(15): 1515–1523

    [59] Wyckoff J B, Wang Y, Lin E Y, Li J F, Goswami S, Stanley E R, Segall J E, Pollard J W, Condeelis J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 2007, 67(6): 2649–2656

    [60] Warburg O. On the origin of cancer cells. Science, 1956, 123(3191): 309–314

    [61] Zhang Q, Piston D W, Goodman R H. Regulation of corepressor function by nuclear NADH. Science, 2002, 295(5561): 1895– 1897

    [62] Zhang Q, Wang S Y, Nottke A C, Rocheleau J V, Piston D W, Goodman R H. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 9029– 9033

    [63] Heart E, Yaney G C, Corkey R F, Schultz V, Luc E, Liu L, Deeney J T, Shirihai O, Tornheim K, Smith P J S, Corkey B E. Ca2+, NAD(P) H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. The Biochemical Journal, 2007, 403(1): 197–205

    [64] Jung J C, Schnitzer M J. Multiphoton endoscopy. Optics Letters, 2003, 28(11): 902–904

    [65] Kim P, Puoris’haag M, C té D, Lin C P, Yun S H. In vivo confocal and multiphoton microendoscopy. Journal of Biomedical Optics, 2008, 13(1): 010501

    [66] KoehlerMJ, Speicher M, Lange-Asschenfeldt S, Stockfleth E, Metz S, Elsner P, Kaatz M, K nig K. Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases. Experimental Dermatology, 2011, 20(7): 589–594

    [67] Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike B F M, Reichart R, Kalff R, Dietzek B, Popp J. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. Journal of Biomedical Optics, 2011, 16(2): 021113-1–021113-3

    [68] Breunig H G, Studier H, K nig K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Optics Express, 2010, 18(8): 7857–7871

    [69] Chen J, Lee A, Zhao J, Wang H, Lui H, McLean D I, Zeng H. Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastic tissue components under two-photon excitation. Skin Research and Technology, 2009, 15(4): 418–426

    [70] Paoli J, Smedh M, Ericson M B. Multiphoton laser scanning microscopy—a novel diagnostic method for superficial skin cancers. Seminars in Cutaneous Medicine and Surgery, 2009, 28(3): 190– 195

    [71] Dimitrow E, Ziemer M, Koehler M J, Norgauer J, K nig K, Elsner P, Kaatz M. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. The Journal of Investigative Dermatology, 2009, 129 (7): 1752–1758

    [72] Piletic I R, Matthews T E, Warren W S. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. The Journal of Physical Chemistry A, 2010, 114(43): 11483–11491

    [73] Matthews T E, Piletic I R, Selim M A, Simpson M J, Warren W S. Pump-probe imaging differentiates melanoma from melanocytic nevi. Science Translational Medicine, 2011, 3(71): 71ra15

    [74] Matthews T E,Wilson JW, Degan S, Simpson MJ, Jin J Y, Zhang J Y, Warren W S. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. Biomedical Optics Express, 2011, 2(6): 1576–1583

    [75] Gu M, Bao H C, Li J L. Cancer-cell microsurgery using nonlinear optical endomicroscopy. Journal of Biomedical Optics, 2010, 15(5): 050502

    [76] Li D, Zeng S, Lv X, Liu J, Du R, Jiang R, Chen W R, Luo Q. Dispersion characteristics of acousto-optic deflector for scanning Gaussian laser beam of femtosecond pulses. Optics Express, 2007, 15(8): 4726–4734

    [77] Zeng S, Li D, Lv X, Liu J, Luo Q. Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser. Optics Letters, 2007, 32(9): 1180–1182

    [78] Flusberg B A, Cocker E D, Piyawattanametha W, Jung J C, Cheung E L M, Schnitzer M J. Fiber-optic fluorescence imaging. Nature Methods, 2005, 2(12): 941–950

    [79] Fu L, Gu M. Fibre-optic nonlinear optical microscopy and endoscopy. Journal of Microscopy, 2007, 226(Pt 3): 195–206

    [80] Le Harzic R, Riemann I, Weinigel M, K nig K, Messerschmidt B. Rigid and high-numerical-aperture two-photon fluorescence endoscope. Applied Optics, 2009, 48(18): 3396–3400

    [81] Lelek M, Suran E, Louradour F, Barthelemy A, Viellerobe B, Lacombe F. Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope. Optics Express, 2007, 15(16): 10154–10162

    [82] Meier R, Kromer K, Stepp H, Sroka R. A comparison of confocal and two-photon microendoscopy. In: Dossel O, Schlegel W C, eds. World Congress on Medical Physics and Biomedical Engineering, 2009, 25(6): 177–178

    [83] Llewellyn M E, Barretto R P J, Delp S L, Schnitzer M J. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature, 2008, 454(7205): 784–788

    [84] Paull P E, Hyatt B J, Wassef W, Fischer A H. Confocal laser endomicroscopy: a primer for pathologists. Archives of Pathology & Laboratory Medicine, 2011, 135(10): 1343–1348

    [85] Gulsen G, Yu H, Wang J, Nalcioglu O, Merritt S, Bevilacqua F, Durkin A J, Cuccia D J, Lanning R, Tromberg B J. Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors. Technology in Cancer Research & Treatment, 2002, 1(6): 497–505

    [86] Ntziachristos V, Yodh A G, Schnall M D, Chance B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia (New York, N.Y.), 2002, 4(4): 347–354

    [87] Zhu Q, Tannenbaum S, Kurtzman S H. Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring. Surgical Oncology Clinics of North America, 2007, 16 (2): 307–321

    [88] Zhu Q, Kurtzma S H, Hegde P, Tannenbaum S, Kane M, Huang M, Chen N G, Jagjivan B, Zarfos K. Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia (New York, N.Y.), 2005, 7(3): 263–270

    [89] McCann C M, Waterman P, Figueiredo J L, Aikawa E, Weissleder R, Chen J W. Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. NeuroImage, 2009, 45(2): 360–369

    Jun LIU. Two-photon microscopy in pre-clinical and clinical cancer research[J]. Frontiers of Optoelectronics, 2015, 8(2): 141
    Download Citation