• Acta Physica Sinica
  • Vol. 68, Issue 12, 125201-1 (2019)
Wei-Man Jiang1、2, Yu-Tong Li1、2、7、*, Zhe Zhang1、*, Bao-Jun Zhu1、2, Yi-Hang Zhang1、2, Da-Wei Yuan3, Hui-Gang Wei3, Gui-Yun Liang3, Bo Han4, Chang Liu4, Xiao-Xia Yuan4, Neng Hua5, Bao-Qiang Zhu5, Jian-Qiang Zhu5, Zhi-Heng Fang6, Chen Wang6, Xiu-Guang Huang6, and Jie Zhang1、7、8
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China
  • 4Department of Astronomy, Beijing Normal University, Beijing 100875, China
  • 5Shanghai Institute of Optical and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 6Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
  • 7Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 8Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.7498/aps.68.20190501 Cite this Article
    Wei-Man Jiang, Yu-Tong Li, Zhe Zhang, Bao-Jun Zhu, Yi-Hang Zhang, Da-Wei Yuan, Hui-Gang Wei, Gui-Yun Liang, Bo Han, Chang Liu, Xiao-Xia Yuan, Neng Hua, Bao-Qiang Zhu, Jian-Qiang Zhu, Zhi-Heng Fang, Chen Wang, Xiu-Guang Huang, Jie Zhang. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions[J]. Acta Physica Sinica, 2019, 68(12): 125201-1 Copy Citation Text show less
    Experimental setup.实验布局图
    Fig. 1. Experimental setup.实验布局图
    Peak E-field magnitude versus laser intensity in the four different directions.不同激光强度下, 四个方向上对应的电场峰幅值
    Fig. 2. Peak E-field magnitude versus laser intensity in the four different directions. 不同激光强度下, 四个方向上对应的电场峰幅值
    Electric field waveforms detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2.入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上的电场时间波形
    Fig. 3. Electric field waveforms detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2. 入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上的电场时间波形
    Frequency spectra of the electric fields detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2.入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上电场的频谱分布
    Fig. 4. Frequency spectra of the electric fields detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2. 入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上电场的频谱分布
    Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 1.5 × 1015 W/cm2.入射激光强度为1.5 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4
    Fig. 5. Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 1.5 × 1015 W/cm2. 入射激光强度为1.5 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4
    Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 6.2 × 1015 W/cm2.入射激光强度为6.2 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4
    Fig. 6. Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 6.2 × 1015 W/cm2. 入射激光强度为6.2 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4
    Radiation energy versus laser intensity at different directions: (a) Total radiation energy detected by the antennas; (b) radiation energy at frequencies lower than 0.3 GHz; (c) radiation energy at frequencies upper than 0.3 GHz.不同方向测量的微波辐射能量随激光强度的变化(a)单位立体角内产生的总辐射能; (b)单位立体角内产生的0.3 GHz以下的辐射能; (c)单位立体角内产生的0.3 GHz以上的辐射能
    Fig. 7. Radiation energy versus laser intensity at different directions: (a) Total radiation energy detected by the antennas; (b) radiation energy at frequencies lower than 0.3 GHz; (c) radiation energy at frequencies upper than 0.3 GHz.不同方向测量的微波辐射能量随激光强度的变化(a)单位立体角内产生的总辐射能; (b)单位立体角内产生的0.3 GHz以下的辐射能; (c)单位立体角内产生的0.3 GHz以上的辐射能
    Wei-Man Jiang, Yu-Tong Li, Zhe Zhang, Bao-Jun Zhu, Yi-Hang Zhang, Da-Wei Yuan, Hui-Gang Wei, Gui-Yun Liang, Bo Han, Chang Liu, Xiao-Xia Yuan, Neng Hua, Bao-Qiang Zhu, Jian-Qiang Zhu, Zhi-Heng Fang, Chen Wang, Xiu-Guang Huang, Jie Zhang. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions[J]. Acta Physica Sinica, 2019, 68(12): 125201-1
    Download Citation