• Chinese Journal of Lasers
  • Vol. 44, Issue 2, 201001 (2017)
Wang Xiaolin*, Zhou Pu, Su Rongtao, Ma Pengfei, Tao Rumao, Ma Yanxing, Xu Xiaojun, and Liu Zejin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0201001 Cite this Article Set citation alerts
    Wang Xiaolin, Zhou Pu, Su Rongtao, Ma Pengfei, Tao Rumao, Ma Yanxing, Xu Xiaojun, Liu Zejin. Current Situation, Tendency and Challenge of Coherent Combining of High Power Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201001 Copy Citation Text show less
    References

    [1] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-23.

    [2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

    [3] Stark M. Over 50 percent wall-plug efficiency fiber laser[J]. Laser Technik Journal, 2016, 2: 14-16.

    [4] IPG Photonics Corporation. IPG photonics successfully tests world′s first 10 kilowatt single-Mode production laser[EB/OL]. (2009-6-16)[2017-01-20]. http://www.ipgphotonics.com/Collateral/Documents/English-US/PR_Final_10kW_SM_laser.pdf.

    [5] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

    [6] Zhu J J, Zhou P, Ma Y X, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654.

    [7] Otto H J, Jauregui C, Limpert J, et al. Average power limit of ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality[J]. SPIE, 2015, 9728: 97280E.

    [8] IPG Photonics Corporation. IPG set to ship 100 kW laser[EB/OL]. (2012-11-1)[2017-01-20]. http://optics.org/news/3/10/44.

    [9] Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser[C]. Advanced Solid-State Lasers Congress Technical Digest, 2013: ATh4A.2.

    [10] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]. SPIE, 2016, 9730: 97300Y.

    [11] Zheng Y, Yang Y F, Wang J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071.

    [12] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9): 0901009.

    [13] Zhou Pu, Xu Xiaojun, Liu Zejin, et al. New technology and new configuration for high energy[J]. Laser & Optoelectronics Progress, 2008, 45(1): 37-42.

    [14] Vorontsov M. Adaptive photonics phase-locked elements (APPLE): System architecture and wavefront control concept[C]. SPIE, 2005, 5895: 589501.

    [15] Coffey V. High-energy lasers: New advances in defense applications[J]. Optics and Photonics News, 2014, 25(10): 28-35.

    [16] Mostly Missile Defense. Chronology of MDA′s plans for laser boost-phase defense[EB/OL]. (2016-8-26)[2017-01-20]. https://mostlymissiledefense.com/2016/08/26/chronology-of-mdas-plans-for-laser-boost-phase-defense-august-26-2016/.

    [17] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.

    [18] Ma P F, Zhou P, Ma Y X, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality[J]. Applied Optics, 2013, 52(20): 4854-4857.

    [19] Jeon Y, Nilsson J, Sahu J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters, 2005, 30(5): 459-461.

    [20] Hildebrandt M, Frede M, Kwee P, et al. Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power[J]. Optics Express, 2006, 14(23): 11071-11076.

    [21] Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

    [22] Dajani I, Vergien C, Robin C, et al. Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output[J]. Optics Express, 2009, 17(26): 24317-24333.

    [23] Zeringue C, Vergien C, Dajani I. Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition[J]. Optics Letters, 2011, 36(5): 618-620.

    [24] Zhu C, Hu I N, Ma X Q, et al. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output[C]. Advances in Optics Materials, Advanced Solid-State Photonics, Istanbul, 2011: AMC5.

    [25] Zhang L, Cui S Z, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 2013, 21(5): 5456-5462.

    [26] Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

    [27] John E, David B, Joshua G, et al. Kilowatt-level PM amplifiers for beam combining[C]. Frontiers in Optics, 2008:FTuJ2.

    [28] Goodno G D, Mcnaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544.

    [29] Guintrand C L. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier[C]. Conference on Lasers and Electro-Optics, 2014: JW2A.23.

    [30] Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers[C]. SPIE, 2014, 8961: 89611R.

    [31] Shi W, Fang Q, Fan J L, et al. High power monolithic linearly polarized narrow linewidth single mode fiber laser at 1064 nm[C]. Conference on Laser and Eletro-Optics Pacific Rim, 2015: 26P_16.

    [32] Avdokin A, Gaponstev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers[C]. SPIE, 2015, 9347: 934704.

    [33] Tao R M, Ma P F, Wang X L, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Rearch, 2015, 3(3): 86-93.

    [34] van Deventer M O, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers[J]. Journal of Lightwave Technology, 1994, 12(4): 585-590.

    [35] Stolen R. Polarization effects in fiber Raman and Brillouin lasers[J]. IEEE Journal of Quantum Electronics, 1979, 15(10): 1157-1160.

    [36] Wang X L, Zhang H W, Su R T, et al. Experimental comparison of mode instability (MI) in high power fiber oscillator and fiber amplifier[C]. Laser Optics, Saint Petersburg, 2016: WeS1A-22.

    [37] Martinelli M, Martelli P, Pietralunga S M. Polarization stabilization in optical communications systems[J]. Journal of Lightwave Technology, 2006, 24(11): 4172-4183.

    [38] Chen J, Wu G, Li Y, et al. Active polarization stabilization in optical fibers suitable for quantum key distribution[J]. Optics Express, 2007, 15(26): 17928-17936.

    [39] Koch B, Hidayat A, Zhang H, et al. Optical endless polarization stabilization at 9 krad/s with FPGA-based controller[J]. IEEE Photonics Technology Letters, 2008, 20(12): 961-963.

    [40] Koch B, Mirvoda V, Grieer H, et al. Endless optical polarization control at 56 krad/s, over 50 Gigaradian, and demultiplex of 112-Gb/s PDM-RZ-DQPSK signals at 3.5 krad/s[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1158-1163.

    [41] Xiong Yupeng, Su Rongtao, Li Xiao, et al. Coherent beam combining based on adaptive polarization and active phase control technique[J]. High Power Laser and Particle Beams, 2013, 25(1): 5-6.

    [42] Goodno G D, Mcnaught S J, Weber M E, et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letter, 2012, 37(20): 4272-4274.

    [43] Mcnaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 174-181.

    [44] Flores A, Ehrenreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]. SPIE, 2016, 9728: 97281Y.

    [45] Wang Yanshan, Yan Hong, Peng Wanjing, et al. Linear polarized narrow linewidth fiber amplifier based on active polarization control[J]. Chinese J Lasers, 2016, 43(5): 0519001.

    [46] Dong Suhui, Wang Xiaolin, Su Rongtao, et al. Adaptive polarization conversion system of the non-polarization maintaining to polarization maintaining laser based on SPGD algorithm[J]. High Power Laser and Particle Beams, 2015, 27(5): 051011.

    [47] Dong Suhui, Wang Xiaolin, Su Rongtao, et al. Research on adaptive polarization conversion of non-polarization maintaining fiber amplifier[J]. Chinese J Lasers, 2015, 42(9): 0902009.

    [48] Dong Suhui, Wang Xiaolin, Su Rongtao, et al. Research on adaptively polarization conversion based on the principle of polarization coherence synthesis[J]. Chinese J Lasers, 2016, 43(2): 0202006.

    [49] Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744.

    [50] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]. SPIE, 2016, 9728: 972807.

    [51] Xu Y, Fang Q, Qin Y, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser[J]. Applied Optics, 2015, 54(32): 9419-9421.

    [52] Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power[C]. European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference, 2015: 11-14.

    [53] Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultra-high brightness pumps[C]. SPIE, 2015, 9728: 972806.

    [54] Yang Yifeng, Shen Hui, Chen Xiaolong, et al. All fiber high efficiency narrow linewidth laser with 2.5 kW power with diffraction limited beam quality[J]. Chinese J Lasers, 2016, 43(4): 0419004.

    [55] Huang Z H, Liang X B, Li C Y, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302.

    [56] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.

    [57] Beresnev L A, Weyrauch T, Vorontsov M A, et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems[C]. SPIE, 2008, 7090: 709008.

    [58] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

    [59] Yu C X, Kansky J E, Shaw S E, et al. Coherent beam combining of a large number of PM fibers in a 2D fiber array[C]. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2006: CThAA6.

    [60] Geng C, Li X Y, Zhang X J, et al. Coherent beam combination of an optical array using adaptive fiber optics collimators[J]. Optics Communications, 2011(284): 5531-5536.

    [61] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457.

    [62] Wang X, Wang X L, Zhou P, et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control[J]. IEEE Photonics Technology Letters, 2012, 19(24): 1781-1784.

    [63] Optrnicus Corporation. Adaptive fiber array technology[EB/OL].[2016-1-4]. http://www.optonicus.com/conformal_optical_systems/.

    [64] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058.

    [65] Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high power fiber arrays[C]. SPIE, 2006, 6102: 61020U.

    [66] Fan X Y, Liu J J, Liu J S, et al. Coherent combining of a seven-element hexagonal fiber array[J]. Optics & Laser Technology, 2010(42): 274-279.

    [67] Liu Zejin, Xu Xiaojun, Chen Jinbao, et al. Multi-beam high fill factor beam combiner: ZL200920065407.7[P]. 2010-06-23.

    [68] Jones D C, Turner A J, Scott A M, et al. A multi-channel phase locked fibre bundle laser[C]. SPIE, 2010, 7580: 75801V.

    [69] Xue Y H, He B, Zhou J, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 2011, 28(5): 54211-54212.

    [70] Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Applied Physics B, 2012, 107(6): 785-790.

    [71] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

    [72] Harrison J, Rines G A, Moulton P F, et al. Coherent summation of injection-locked, diode-pumped Nd∶YAG ring lasers[J]. Optics Letters, 1988, 13(2): 111-113.

    [73] Veldkamp W B, Leger J R, Swanson G J. Coherent summation of laser beams using binary phase gratings[J]. Optics Letters, 1986, 11(5): 303-305.

    [74] Leger J R, Swanson G J, Veldkamp W B. Coherent laser addition using binary phase gratings[J]. Applied Optics, 1987, 26(20): 4391-4399.

    [75] Leger J R, Swanson G J, Veldkamp W B. Coherent beam addition of GaAlAs lasers by binary phase gratings[J]. Applied Physics Letters, 1986, 48(14): 888-890.

    [76] Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1191-1196.

    [77] Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35): 6762-6765.

    [78] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285.

    [79] Ma Pengfei, Wang Xiaolin, Su Rongtao, et al. Coherent polarization beam combining of fiber lasers to 2 kW power-level[J]. High Power Laser and Particle Beams, 2016, 28(4): 040102.

    [80] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13): 13547-13553.

    [81] Christensen S E, Olivia K. 2-dimensional waveguide coherent beam combiner[C]. Advanced Solid-State Photonics, 2007: WC1.

    [82] Corcoran C J, Durville F. Passive phasing in a coherent laser array[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 294-300.

    [83] Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser arrary using a self-Fourier cavity[J]. Applied Physics Letters, 2005, 86(20): 201111.

    [84] Li J F, Duan K L, Wang Y S, et al. High-power coherent beam combining of two photonic crystal fiber lasers[J]. IEEE Photonics Technology Letter, 2008, 20(11): 888-890.

    [85] Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array of four fiber amplifers by an all-optical feedback loop[J]. Optics Letters, 2007, 32(13): 1842-1844.

    [86] Michaille L, Taylor D M, Bennett C R, et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Optics Letter, 2008, 33(1): 71-73.

    [87] Michaille L, Bennett C R, Taylor D M, et al. Multi-core photonic crystal fibers for high-power laser and amplifiers[J]. SPIE, 2006, 6102: 61020W.

    [88] Wang B S, Anthony S. All-fiber passive coherent beam combining of fiber lasers and challenges[C]. Lasers, Sources, and Related Photonic Devices, 2012: FTh3A.

    [89] Wang B S, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 2009, 34(7): 863-865.

    [90] Chen Z L, Zhou P, Wang X L, et al. Synchronization and coherent addition of three pulsed fiber lasers by mutual injection and phase modulation[J]. Optics and Laser Technology, 2009, 41(6): 710-713.

    [91] Valeri K, Robert G H, Anca M. Coherent beam combining of fiber amplifier array output through spectral self-phase conjugation via SBS[C]. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2006: C67.

    [92] Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup[J]. Optics Express, 2007, 15(10): 6464-6469.

    [93] Fridman M, Nixon M, Davidson N, et al. Passive phase locking of 25 fiber lasers[J]. Optics Letters, 2010, 35(9): 1434-1436.

    [94] Glova A F. Phase locking of optically coupled lasers[J]. Quantum Electronics, 2003, 33(4): 283-306.

    [95] Glova A F, Lysikov A Y. Phase locking of 2D laser arrays by the spatial filter method[J]. Quantum Electronics, 2002, 32(3): 277-278.

    [96] Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 460-472.

    [97] Anderegg J, Brosnan S, Weber M, et al. 8-W coherently phased 4-element fiber array[C]. SPIE, 2003, 4974: 1-5.

    [98] Goodno G D, Book L D, Rothenberg J E, et al. Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers[J]. Optical Engineering, 2011, 50(11): 111608.

    [99] Hou Jing, Xiao Rui, Jiang Zongfu, et al. Coherent beam combination of three ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(10): 1585-1588.

    [100] Fan X Y, Liu J J, Liu J S, et al. Experimental investigation of a seven-element hexagonal fiber coherent array[J]. Chinese Optics Letters, 2010, 8(1): 48-51.

    [101] Metin M, Hans B, Monica M, et al. Atmospheric aberration mitigation and transmitter power scaling using a coherent fiber array[C]. IEEE Aerospace Conference Proceedings, 2004: 1745-1750.

    [102] Shay T M, Benham V. First experimental demonstration of fiber array phase locking by RF phase modulation[C]. Proceedings of the 17th Solid State and Diode Laser Technology Review, 2004: BEAM-7.

    [103] Shay T M, Benham V, Spring L J, et al. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging[C]. SPIE, 2006, 6102: 6102V.

    [104] Jolivet V, Bourdon P, Bennai B, et al. Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 257-268.

    [105] Angel F, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]. CLEO: Laser Applications to Photonic Applications, 2011: CFE3.

    [106] Ma Y X, Wang X L, Leng J Y, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953.

    [107] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18): 3741-3743.

    [108] Zhou Pu, Ma Yanxing, Wang Xiaolin, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5): 973-977.

    [109] Liu L, Vorontsov M A. Phase-locking of tiled fiber array using SPGD feedback controller[C]. SPIE, 2005, 58950: 58950P.

    [110] Wang X L, Zhou P, Ma Y X, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Optics Letter, 2011, 36(16): 3121-3123.

    [111] Shawn M R. Active coherent combination of >200 semiconductor amplifiers using a SPGD algorithm[C]. CLEO: Laser Applications to Photonic Applications, 2011: V1.

    [112] Weyrauch T, Vorontsov M, Ovchinnikov V, et al. Atmospheric turbulence compensation and coherent beam combining over a 7 km propagation path using a fiber-array system with 21 sub-apertures[C]. Imaging and Applied Optics, Seattle, 2014: W2E-W3E.

    [113] Tian Haochen, Song Youjian, Ma Chunyang, et al. Timing and carrier envelope phase synchronization from two independent femtosecond lasers[J]. Chinese J Lasers, 2016, 43(8): 0801003.

    [114] Huang S W, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479.

    [115] Chanan G, Ohara C, Troy M. Phasing the mirror segment of the keck telescope II: The narrow-band phasing algorithm[J]. Applied Optics, 2000, 38(5): 4706-4714.

    [116] Chanan G, Troy M, Ohara C. Phasing the primary mirror segments of the keck telescopes: A comparisom of different technique[C]. SPIE, 2000, 4003: 188-201.

    [117] Yang Ruofu, Yang Ping, Shen Feng. Experimental research on phase detection and correction of two fiber amplifier based on active segmented mirrors[J]. Acta Physica Sinica, 2009, 58(12): 8297-8301.

    [118] Nelder J A, Mead R. A simplex method for function minimization[J]. Computer Journal, 1965, 7(4): 308-313.

    [119] Yang P, Ao M W, Liu Y, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 2007, 15(25): 17051-17062.

    [120] Kolibal J, Howard D. The novel stochastic Bernstein method of functional approximation[C]. Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, 1980.

    [121] Su Rongtao, Zhou Pu, Ma Yanxing, et al. Multi-beam combiner with optical path adjust function: ZL201210011185.7[P]. 2012-10-11.

    [122] Su R T, Zhou P, Wang X L, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Optics Letters, 2012, 37(4): 497-499.

    [123] Hdrich S, Klenke A, Hoffmann A, et al. 135 W, 0.5 mJ, sub-30 fs pulses obtained by nonlinear compression of coherently combined fiber CPA[C]. Advanced Solid-State Lasers Congress, Paris, 2013: AW2A.7.

    [124] Newport Corporation. MDL series[EB/OL]. (2017-1-4)[2017-01-20]. http://www.newport.com/medias/sys_master/images/images/h00/h32/8797207658526/MDL-User-Manual-112707.pdf

    [125] Weiss S B, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Optics Letters, 2012, 37(4): 455-457.

    [126] Optiphase Inc. PZ1 high-speed fiber stretcher[EB/OL]. (2010-9-1). http://www.optiphase.com/data_sheets/ PZ1%20Data%20Sheet%20Rev% 20E6.pdf.

    [127] Ixblue Corporation. NIR-MPX-LN series 1000 nm band phase modulators[EB/OL]. (2017-1-4)[2017-01-20]. https://photonics.ixblue.com/files/files/pdf/Modulators/NIR-MPX-LN_SERIES.pdf.

    [128] Yu Hailong. Study on high power femtosecond fiber lasers and their coherent beam combining technology[D]. Changsha: National University of Defense Technology, 2016.

    [129] Zhang Zhixin, Yu Hailong, Zhi Dong, et al. All fiber optcial path difference adaptive control method in femtosecond fiber laser coherent polarization beam combination system[J]. Acta Optica Sinica, 2016, 36(9): 0906003.

    [130] Thalhammer G, Bowman R W, Love G D, et al. Speeding up liquid crystal SLMs using overdrive with phase change reduction[J]. Optics Express, 2013, 21(2): 1779-1797.

    [131] Wang Xiong, Wang Xiaolin, Zhou Pu, et al. Recent research and development of tilt-tip wavefront control in coherent beam combination of fiber lasers[J]. Chinese J Lasers, 2012, 39(s1): s101001.

    [132] Wang Xiong, Wang Xiaolin, Zhou Pu, et al. Experimental research of tilt-tip wavefront and phase-locking control in fiber lasers coherent beam combining[J]. Infrared and Laser Engineering, 2013, 42(6): 1443-1447.

    [133] Goodno G D, Weiss B S. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Optics Express, 2012, 20(14): 14945-14953.

    [134] Liu L, Vorontsov M A, Polnau E P, et al. Adaptive phase-locked fiber array with wavefront phase tip-tilt compensation using piezoelectric fiber positioners[C]. SPIE, 2007, 6708: 67080K.

    [135] Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators analysis and experimental demonstration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 269-280.

    [136] Wang X, Wang X L, Zhou P, et al. Coherent beam combination of adaptive fiber laser array with tilt-tip and phase-locking control[J]. Chinese Physics B, 2013, 22(2): 24206.

    [137] Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 2013, 21(21): 25045-25055.

    [138] Zhi D, Ma Y X, Ma P F, et al. Adaptive fiber optics collimator based on flexible hinges[J]. Applied Optics, 2014, 53(24): 5434-5438.

    [139] Zhi D, Ma P F, Ma Y X, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Optics Letters, 2014, 25(22): 31520-31528.

    [140] Zhi D, Ma Y X, Chen Z L, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality[J]. Optics Letters, 2016, 41(10): 2217-2220.

    [141] Ma P F, Tao R M, Wang X L, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 2014, 22(4): 4123-4130.

    [142] Stuart J M, Hiroshi K, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]. Conference on Lasers and Electro-Optics/International Quantum Electronics, 2009: CThA1.

    [143] Redmond S M, Creedon K J, Kansky J E, et al. Active coherent beam combining of diode lasers[J]. Optics Letters, 2011, 36(6): 999-1002.

    [144] Optics Org. DARPA extends laser weapon range[EB/OL]. (2014-3-11)[2017-01-20]. http://optics.org/news/5/3/13.

    [145] Dorschner T A. Adaptive photonic phase locked elements-An overview[C]. MTO Symposium, 2007.

    [146] Yang Zhenming, Kong Lingjiang, Xiao Feng, et al. Coherent beam combination based on array of liquid crystal optical phased arrays[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121402.

    [147] Chen J, Kong L J, Xiao F, et al. Continuously one-dimensional steering of coherently combined beam utilizing phased array of liquid crystal optical phased arrays (PALCOPA)[C]. SPIE, 2015, 9344: 934426.

    [148] Silverstein B, Brashears T, Lubin P. Space debris mitigation utilizing laser ablation[EB/OL].(2013-9-1) http://www.deepspace.ucsb.edu/wp-content/uploads/2013/09/Final-Draft-Paper.pdf.

    [149] Hughes G B, Lubin P, Bible J, et al. DE-STAR: Phased-array laser technology for planetary defense and other scientific purposes[C]. SPIE, 2013, 8876: 88760J.

    [150] Lubin P, Hughes G B, Bible J, et al. Toward directed energy planetary defense[J]. Optical Engineering, 2014, 53(2): 25103.

    [151] Lubin P, Brashears T, Hughes G, et al. Effective planetary defense using directed energy DE-STARLITE[C]. 4th IAA Planetary Defense Conference, Roma, 2015.

    [152] Hughes G B, Lubin P, Suen J, et al. Local phase control for a planar array of fiber laser amplifiers[C]. SPIE, 2015, 9616: 961607.

    [153] Riley J, Lubin P, Hughes G B, et al. Directed energy active illumination for near-earth object detection[C]. SPIE, 2014, 9226: 922606.

    [154] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270.

    [155] Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113(24): 245002.

    [156] Mourou G A, Hulin D, Galvanauskas A. The road to high peak power and high average power lasers: Coherent amplification network (CAN)[J]. Superstrong Fields in Plasmas, 2006, 827(1): 152-163.

    [157] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261.

    [158] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Physics Today, 2009, 62(62): 44-49.

    [159] International Center for Zetta-Exawatt Science and Technology. Objectives[EB/OL]. (2016-09-08)[2017-01-20]. https://portail.polytechnique.edu/izest/en/can/objectives.

    [160] Mourou G. ICAN-B international coherent amplifying network——Building the case for a H2020 future emerging technology project[C]. ICAN Laser's second wind - A Revolutionnary Laser Design to Address Grand Scientific and Societal Challenges, Palaiseau, 2014.

    [161] Breitkopf S, Eidam T, Klenke A. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.

    [162] Breitkopf S, Eidam T, von Grafenstein L, et al. Approaching TW-peak powers at >10 kHz repetition rate by multi-dimensional coherent combining of femtosecond fiber lasers[C]. SPIE, 2014, 8961: 896106.

    [163] Seise E, Klenke A, Breitkopf S, et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers[J]. Optics Letters, 2011, 36(19): 3858-3860.

    [164] Zaouter Y, Daniault L, Hanna M, et al. Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers[J]. Optics Letters, 2012, 37(9): 1460-1462.

    [165] Klenke A, Hoffmann A, Hdrich S, et al. 2.1 mJ 210 W femtosecond fiber CPA system[C]. SPIE, 2014, 8961: 89611D.

    [166] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped- and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 2015, 41(1): 89-92.

    [167] Kienel M, Müller M, Llenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346.

    [168] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442.

    [169] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26(11): 110101.

    [170] Su R T, Zhang Z X, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phased control[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2585-2588.

    [171] Defense Advanced Research Projects Agency. Excalibur[EB/OL]. (2014-3-30)[2017-01-20]. http://www.darpa.mil.

    [172] Ma P F, Zhou P, Wang X L, et al. Influence of perturbative phase noise on active coherent polarization beam combining system[J]. Optics Express, 2013, 21(24): 29666-29678.

    CLP Journals

    [1] Ci Mingru, Liu Jingjiao, Jiang Dongsheng, Han Long, Liu Jinsheng. Comparison of laser phased array and microwave phased array radar transmitting antenna[J]. Infrared and Laser Engineering, 2018, 47(4): 406001

    [2] Zhou Fengquan, Yuan Shuai, Guo Zhengru, Hao Qiang, Xu Hui, Zeng Heping. High Power Compact Fiber Femtosecond Laser Amplification System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103201

    [3] Peng Lihua, Li Mingqiu, Huang Zhiwei, Shi Hongwei. Method of Sidelobe Suppression with Waveguide Optical Phased Array[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82301

    [4] Meng Lingwu, Shao Shuai. Influence Factors Analysis of Temperature Field of Light Guide Mirror Surface Under High Power Laser[J]. Chinese Journal of Lasers, 2017, 44(10): 1001004

    [5] Ren Guoguang, Yi Weiwei, Qi Yu, Huang Jijin, Qu Changhong. U.S. Theater and Strategic UVA-Borne Laser Weapon[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100002

    Wang Xiaolin, Zhou Pu, Su Rongtao, Ma Pengfei, Tao Rumao, Ma Yanxing, Xu Xiaojun, Liu Zejin. Current Situation, Tendency and Challenge of Coherent Combining of High Power Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201001
    Download Citation