[1] CHOI Y C, PARK J H, CHOI K S. An impact source localization technique for a nuclear power plant by using sensors of different types[J]. ISA Trans, 2011, 50(1): 111-118.
[5] WAS G S. Fundamentals of radiation materials science[M]. Heidelberg, Springer, 2007: 51-97.
[8] IVANOV S A, STASH A I. Influence of neutron irradiation on the characteristics of phase transitions in multifunctional materials with a perovskite structure[J]. Russ J Inorg Chem, 2020, 65(12): 1789-1819.
[9] HAERTLING G H. Ferroelectric ceramics: history and technology[J]. J Am Ceram Soc, 1999, 82(4): 797-818.
[10] HENRIQUES A, GRAHAM J T, LANDSBERGER S, et al. Crystallographic changes in lead zirconate titanate due to neutron irradiation[J]. AIP Adv, 2014, 4(11): 117125-117131.
[11] YONG-II K, NAMKYOUNG C, GEUNWOO K, et al. Effect of neutron irradiation on properties of Pb(Mg1/3Nb2/3)O3-PbTiO3[J]. J Nanosci Nanotechnol, 2015, 15(11): 8414-8417.
[12] TOACSAN M I, IOACHIM V, NEDELCU L, et al. Accelerate ageing of PZT-type ceramics[J]. Prog Solid State Chem, 2007, 35(2-4): 531-537.
[13] BASTANI Y, CORTS-PEAB A Y, WILSON A D, et al. Effects of high energy X-ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response[J]. Appl Phys Lett, 2013, 102(19): 192906-192906.
[14] ANGADI B, VICTOR P, JALI V M, et al. High energy Li ion irradiation effects in ferroelectric PZT and SBT thin films[J]. Thin Solid Films, 2003, 434(1-2): 40-48.
[15] BREWER J, WILLIAMS S C, CRESS C D, et al. Effects of crystallization interfaces on irradiated ferroelectric thin films[J]. Appl Phys Lett, 2017, 111(21): 212905-212910.
[16] BASSIRI-GHARB N, FUJII I, HONG E, et al. Domain wall contributions to the properties of piezoelectric thin films[J]. J Electroceram, 2007, 19(1): 47-65.
[17] PARK C H, CHADI D J. Microscopic study of oxygen-vacancy defects in ferroelectric perovskites[J]. Phys Rev B, 1998, 57(22): 961-964.
[18] SCOTT J F, ARAUJO C A, MELNICK B M, et al. Quantitative measurement of space charge effects in lead zirconate-titanate memories[J]. J Appl Phys, 1991, 70(1): 382-388.
[19] TAGANTSEV A K, STOLICHNOV I, COLLA E L, et al. Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features[J]. J Appl Phys, 2001, 90(3): 1387-1401.
[20] BREWER S J, WILLIAMS S C, GRIFFIN L A, et al. Enhanced radiation tolerance in Mn-doped ferroelectric thin films[J]. Appl Phys Lett, 2017, 111(2): 022906-02210.
[21] XIN Hong, REN Wei, WU Xiaoqing, et al. Lead zirconate titanate thick films with (100) preferential orientation[J]. J Appl Phys, 2013, 114(2): 027017-027021.
[22] HUI Wei, CHEN Yongjun. Ferroelectric and pyroelectric properties of Mn-doped lead zirconate titanate ceramics[J]. Ceram Int, 2014, 41(5): 6158-6163.
[23] STEVEN J B, CARMEN Z D, CONNOR P C, et al. Effect of top electrode material on radiation induced degradation of ferroelectric thin film structures[J]. J Appl Phys, 2016, 120(2): 024101-024109.
[24] XIN Hong, REN Wei, WU Xiaoqing, et al. Effect of Mn doping on structures and properties of chemical solution deposited lead zirconate titanate thick films with (100) preferential orientation[J]. J Appl Phys, 2013, 114(2): 027017-027021.
[25] ZHANG Q, WHATMORE R W. Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films[J]. J Appl Phys, 2003, 94(8): 5228-5233.
[26] SHIRANE G, DANNER H, PAVLOVIC A, et al. Phase transitions in ferroelectric KNbO3[J]. Phys Rev, 1951, 93(4): 672-673.
[27] STASH A I, IVANOV S A, STEFANOVICH S. Y, et al. Features of the structural states of KNbO3 single crystals before and after fast-neutron irradiation[J]. Crystallogr Rep, 2017, 62(1): 23-32.
[28] BY L K, HELEN D M. The structure of potassium niobate at room temperature: the solution of a pseudo symmetric structure by fourier methods[J]. Acta Crystallogr, 1967, 22(5): 639-648.
[29] DAI Gang, DU Yijia, ZHOU Quanfeng, et al. Degradation of KNN-based lead free piezoelectric material under gamma irradiation[J]. IEEE Trans Nucl Sci, 2018, 65(8): 1964-1968.
[30] NATH A K, MEDHI N. Gamma ray irradiation effects on the ferroelectric and piezoelectric properties of barium titanate ceramics[J]. J Mater Eng Perform, 2013, 22(9): 2716-2722.
[31] NATH A K, MEDHI N. Effect of gamma ray irradiation on the ferroelectric and piezoelectric properties of barium stannate titanate ceramics [J]. Radiat Phys Chem, 2013, 91: 44-49.
[32] WILLIAMSON G K, HALL W H. X-ray line broadening from filed aluminium and wolfram[J]. Acta Metall, 1953, 1: 22-31.
[33] DAI Xunhun, XU Zhengkui, VIEHLAND D. Effect of oxygen octahedron rotations on the phase stability, transformational characteristics and polarization behavior in the lead zirconate titanate crystalline solution series[J]. J Am Ceram Soc, 1995, 78(10): 2815-2827.
[34] SHANMUGA S S, BINAY K, ASOKANC K, et al. Effect of SHI irradiation on NBT-BT ceramics: transformation of relaxor ferroelectric to ferroelectric nature[J]. Appl Surf Sci, 2013, 265: 296-301.
[35] AURIVILLIUS B. Mixed bismuth oxides with layer lattices I. the structure type of CaNb2Bi2O9[J]. Arkiv kemi, 1949, 1: 463-480.
[36] CHOA S Y, CHOIA G P, KIMA E Y, et al. Gamma-ray irradiation effects on electrical properties of bismuth layer structured ferroelectric ceramic[J]. Ceram Int, 2017, 43(17): 15694-15698.
[38] WANG Zan, JIANG Wei, LI San-Xi, et al. Effects of 60Co γ-ray irradiation on microstructure and ferroelectric properties of Bi3.25La0.75Ti3O12thin films[J]. Nucl Instrum Methods Phys Res Sect B, 2016, 366(10): 1-5.
[39] KAO M C, CHEN H Z, YOUNG S L. Ferroelectric properties and leakage current mechanisms of Bi3.25La0.75Ti3O12 thin films with a-axis preferred orientation prepared by sol-gel method[J]. Mater Lett, 2008, 62(4-5): 629-632.
[40] KIM K T, KIM C I. The effect of orientation on structure and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films[J]. Surf Coat Tech, 2004, 177-178(8): 770-773.