[1] Zhou X, Tian P, Sher C W, et al. Growth, transfer printing and colour conversion techniques towards fullcolour microLED display[J]. Progress in Quantum Electronics, 2020, 71: 100263.
[2] Zhu S, Chen X, Liu X, et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 2020, 73: 100274.
[3] Tian Pengfei, Shan Xinyi, Zhu Shijie, et al. AlGaN ultraviolet microLEDs[J]. IEEE J. of Quantum Electron., 2022: 10.11091JQE.
[4] Tian P, Liu X, Yi S, et al. Highspeed underwater optical wireless communication using a blue GaNbased microLED[J]. Opt. Express, 2017, 25(2): 11931201.
[5] Meng W, Xu F, Yu Z, et al. Threedimensional monolithic microLED display driven by atomically thin transistor matrix[J]. Nature Nanotechnol., 2021, 16(11): 12311236.
[6] Qiu P, Zhu S, Jin Z, et al. Beyond 25Gbps optical wireless communication using wavelength division multiplexed LEDs and microLEDs[J]. Opt. Lett., 2022, 47(2): 317320.
[7] Zhu S J, Qiu P J, Shan X Y, et al. MicroLED based doublesided emission display and crossmedium communication[J]. IEEE Photonics J., 2022, 14(3): 7326705.
[8] Zhu S, Qiu P, Qian Z, et al. 2Gbps freespace ultravioletC communication based on a highbandwidth microLED achieved with preequalization[J]. Opt. Lett., 2021, 46(9): 21472150.
[9] Wang Z, Zhu S, Shan X, et al. Fullcolor microLED display based on a single chip with two types of InGaN/GaN MQWs[J]. Opt. Lett., 2021, 46(17): 43584361.
[10] Liu X, Lin R, Chen H, et al. Highbandwidth InGaN selfpowered detector arrays toward MIMO visible light communication based on microLED arrays[J]. ACS Photonics, 2019, 6(12): 31863195.
[11] Lin R, Liu X, Zhou G, et al. InGaN microLED array enabled advanced underwater wireless optical communication and underwater charging[J]. Adv. Optical Materials, 2021, 9(12): 2002211.
[12] Wang Z, Lin R, Qu D, et al. Ultrafast machine vision with artificial neural network devices based on a GaNbased microLED array[J]. Opt. Express, 2021, 29(20): 3196331973.
[13] Liu A Y, Bowers J. Photonic integration with epitaxial ⅢⅤ on silicon[J]. IEEE J. of Sel. Top. Quantum Electron., 2018, 24(6): 112.
[14] Li N, Han K, Spratt W, et al. Ultralowpower subphotonvoltage highefficiency lightemitting diodes[J]. Nature Photonics, 2019, 13(9): 588592.
[15] Li J, Wu J, Chen L, et al. Onchip integration of Ⅲnitride flipchip lightemitting diodes with photodetectors[J]. J. of Lightwave Technol., 2021, 39(8): 26032608.
[16] Li K H, Lu H, Fu W Y, et al. Intensitystabilized LEDs with monolithically integrated photodetectors[J]. IEEE Trans. on Industrial Electronics, 2018, 66(9): 74267432.
[17] Tchernycheva M, Messanvi A, de Luna Bugallo A, et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors[J]. Nano Lett., 2014, 14(6): 35153520.
[18] Hui R, Taherion S, Wan Y, et al. GaNbased waveguide devices for longwavelength optical communications[J]. Appl. Phys. Lett., 2003, 82(9): 13261328.
[19] Li K H, Cheung Y F, Jin W, et al. InGaN RGB lightemitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity[J]. IEEE Trans. on Industrial Electronics, 2019, 67(6): 51545160.
[20] Lin P T, Singh V, Lin H Y G, et al. Lowstress silicon nitride platform for midinfrared broadband and monolithically integrated microphotonics[J]. Adv. Optical Materials, 2013, 1(10): 732739.
[21] Liu C, Cai Y, Jiang H, et al. Monolithic integration of Ⅲnitride voltagecontrolled light emitters with dualwavelength photodiodes by selectivearea epitaxy[J]. Opt. Lett., 2018, 43(14): 34013404.
[22] Zhou G, Lin R, Qian Z, et al. GaNbased microLEDs and detectors defined by current spreading layer: sizedependent characteristics and their multifunctional applications[J]. J. of Phys. D: Appl. Phys., 2021, 54(33): 335104.
[23] Huang Y, Guo Z, Huang H, et al. Influence of current density and capacitance on the bandwidth of VLC LED[J]. IEEE Photon. Technol. Lett., 2018, 30(9): 773776.
[24] Islim M S, Ferreira R X, He X, et al. Towards 10Gb/s orthogonal frequency division multiplexingbased visible light communication using a GaN violet microLED[J]. Photonics Research, 2017, 5(2): A35A43.
[25] Zheng L, Guo Z, Yan W, et al. Research on a camerabased microscopic imaging system to inspect the surface luminance of the microLED array[J]. IEEE Access, 2018, 6: 5132951336.