• Optoelectronic Technology
  • Vol. 43, Issue 4, 317 (2023)
Yuanqing ZHOU1, Zunxian YANG1、2, and Tailiang GUO1、2
Author Affiliations
  • 1School of Physical and Information Engineering, Fuzhou University, Fuzhou 3506, CHN
  • 2National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, CHN
  • show less
    DOI: 10.19453/j.cnki.1005-488x.2023.04.007 Cite this Article
    Yuanqing ZHOU, Zunxian YANG, Tailiang GUO. Study on the Properties of CsPbBr3 Perovskite Quantum Dots Modified by Complex Ligands[J]. Optoelectronic Technology, 2023, 43(4): 317 Copy Citation Text show less
    References

    [1] Bi Chenghao, Kershaw Stephen V, Rogach Andrey L et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol[J]. Advanced Functional Materials, 29, 1902446(2019).

    [2] Miao Jianli, Zhang Fujun. Recent progress on highly sensitive perovskite photodetectors[J]. Journal of Materials Chemistry C, 7, 1741-1791(2019).

    [3] Huang Fei, Li Mengjie, Peter Siffalovic et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells[J]. Energy & Environmental Science, 12, 518-549(2019).

    [4] Zhao Qian, Abhijit Hazarika, Chen Xihan et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure[J]. Nature Communications, 10, 2842(2019).

    [5] Wang Congyong, Sun Qisheng, Peng Gang et al. CsPbBr3 quantum dots/PDVT-10 conjugated polymer hybrid film-based photonic synaptic transistors toward high-efficiency neuromorphic computing[J]. Science China-Materials, 65, 3077-3086(2022).

    [6] Wang Yan, Lv Ziyu, Zhou Li et al. Emerging perovskite materials for high density data storage and artificial synapses[J]. Journal of Materials Chemistry C, 6, 1600-1617(2018).

    [7] Tasnim Ahmed, Sudipta Seth, Anunay Samanta. Boosting the photoluminescence of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts[J]. Chemistry of Materials, 30, 3633-3637(2018).

    [8] Ju An Hee et al. Energy and charge dual transfer engineering for high-performance green perovskite light-emitting diodes[J]. Advanced Functional Materials, 32, 2112849(2022).

    [9] Seungmin Baek, Kang Seokwoo, Chaeyeon Son et al. Highly stable all-inorganic perovskite quantum dots using a ZnX2-trioctylphosphine-oxide: Application for high-performance full-color light-emitting diode[J]. Advanced Optical Materials, 8, 1901897(2020).

    [10] Pan Jiangyong, Fang Fan, Xie Jing et al. Synergistic effects of charge transport engineering and passivation enabling efficient inverted perovskite quantum-dot light-emitting diodes[J]. Journal of Materials Chemistry C, 8, 5572-5579(2020).

    [11] Zheng Weilin, Wan Qun, Liu Mingming et al. CsPbBr3 nanocrystal light-emitting diodes with efficiency up to 13.4% achieved by careful surface engineering and device engineering[J]. Journal of Physical Chemistry C, 125, 3110-3118(2021).

    [12] Bao Xuyuan, Li Mingze, Zhao Jing et al. The postsynthetic anion exchange of CsPbI3 nanocrystals for photoluminescence tuning and enhanced quantum efficiency[J]. Journal of Materials Chemistry C, 8, 12302-12307(2020).

    [13] Yao Jisong, Zhang Jiachen, Wang Li et al. Suppressing auger recombination in cesium lead bromide perovskite nanocrystal film for bright light-emitting diodes[J]. Journal of Physical Chemistry Letters, 11, 9371-9378(2020).

    [14] Tang Cheng et al. Potassium doping to enhance green photoemission of light-emitting diodes based on CsPbBr3 perovskite nanocrystals[J]. Advanced Optical Materials, 8, 2000742(2020).

    [15] Dong Yitong, Wang Ya-Kun, Yuan Fanglong et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots[J]. Nature Nanotechnology, 15, 668-674(2020).

    [16] Shen Wei, Zhang Jianbin, Dong Ruimin et al. Stable and efficient red perovskite light-emitting diodes based on Ca2+-doped CsPbI3 nanocrystals[J]. Research, 302-312(2022).

    [17] Yang Liu, Xiao Yaoming, Han Gaoyi et al. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell[J]. Thin Solid Films, 689, 137495(2019).

    [18] Yao Qin, Xue Qifan, Li Zhenchao et al. Graded 2D/3D perovskite heterostructure for efficient and operationally stable ma-free perovskite solar cells[J]. Advanced Materials, 32, 2000571(2020).

    [19] Gong Chengkai, Wang Xiaofeng, Xia Xuefeng et al. In-situ guanidinium bromide passivation treatment of CsPbBr3 perovskite quantum dots exhibiting high photoluminescence and environmental stability[J]. Applied Surface Science, 559, 149986(2021).

    [20] Takayuki Chiba, Yoshihito Takahashi, Jun Sato et al. Surface crystal growth of perovskite nanocrystals via postsynthetic lead(II) bromide treatment to increase the colloidal stability and efficiency of light-emitting devices[J]. Acs. Applied Materials & Interfaces, 12, 45574-45581(2020).

    [21] Jodlowski A D, Roldan Carmona C, Grancini G et al. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells[J]. Nature Energy, 2, 972-979(2017).

    Yuanqing ZHOU, Zunxian YANG, Tailiang GUO. Study on the Properties of CsPbBr3 Perovskite Quantum Dots Modified by Complex Ligands[J]. Optoelectronic Technology, 2023, 43(4): 317
    Download Citation