• Optics and Precision Engineering
  • Vol. 27, Issue 8, 1836 (2019)
DU Zhen-long*, SHEN Hai-yang, SONG Guo-mei, and LI Xiao-li
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20192708.1836 Cite this Article
    DU Zhen-long, SHEN Hai-yang, SONG Guo-mei, LI Xiao-li. Image style transfer based on improved CycleGAN[J]. Optics and Precision Engineering, 2019, 27(8): 1836 Copy Citation Text show less
    References

    [1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.

    [2] LV X Q, WU L, GU Y, et al.. Detection of low dose CT pulmonary nodules based on 3D convolution neural network [J]. Opt. Precision Eng., 2018, 26(5): 1211-1218. (in Chinese)

    [3] LIAO X, ZHEN X, ZOU J, et al.. Intelligent auxiliary diagnosis method of cervical cytopathology based on deep convolutional neural networks [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(4): 347-356. (in Chinese)

    [4] LI Y, LIU X Y, ZHANG H Q, et al.. Optical remote sensing image retrieval based on convolutional neural networks [J]. Opt. Precision Eng., 2018, 26(1): 200-207. (in Chinese)

    [5] LIN J H, WANG Y J. Three-dimentional reconstruction of semantic scene based on RGB-D map [J].Opt. Precision Eng., 2018, 26(5): 1231-1241. (in Chinese)

    [6] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks [C]. Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: CVPR, 2016: 2414-2423.

    [7] JOHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super-resolution [C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands: ECCV, 2016: 694-711.

    [8] DANIEL H, IKHSANUL H, IKUO K, et al.. Fast neural style transfer for motion data [J]. IEEE Computer Graphics and Applications, 2017, 37(4): 42-49.

    [9] MICHAE E, PEYMAN M. Style transfer via texture synthesis [J]. IEEE Transactions on Image Processing, 2017, 26(5): 2338-2351.

    [10] MANUEL R, ALEXEY D, THOMAS B. Artistic style transfer for videos and spherical images [J]. International Journal of Computer Vision, 2018, 126(11): 1199-1219.

    [11] DU ZH L, ZHAO ZH W, LI X L, et al.. Flying people: high-fidelity image warping via killing vector fields [J]. Journal of Computer-Aided Design and Computer Graphics, 2016, 28(8): 1333-1340.

    [12] ISOLA P, ZHU J Y, ZHOU T, et al.. Image-to-image translation with conditional adversarial networks [C]. Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA: CVPR, 2017: 1125-1134.

    [13] LIN Y L, DAI X Y, LI L, et al.. The new frontier of AI research: generative adversarial networks [J]. Acta Automatica Sinica, 2018, 44(5): 775-792. (in Chinese)

    [14] WANG K F, GOU CH, DUAN Y J, et al.. Generative adversarial networks: the state of the art and beyond [J]. Acta Automatica Sinica, 2017, 43(3): 321-332. (in Chinese)

    [15] WANG G M, QIAO J F, WANG L. A generative adversarial network based on energy function [J]. Acta Automatica Sinica, 2018, 44(5): 793-803. (in Chinese)

    [16] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [C]. Proceedings of the 4th International Conference on Learning Representations, Puerto Rico, USA: ICLR, 2016: 580-596.

    [17] ZHU J Y, PARK T, ISOLA P, et al.. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]. Proceedings of the 16th IEEE International Conference on Computer Vision, Venice, Italy: ICCV, 2017: 2223-2232.

    [18] HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition [C]. Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: CVPR, 2016: 770-778.

    [19] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA: CVPR, 2015: 3431-3440.

    [20] HUANG G, LIU Z, MAATEN L, et al.. Densely connected convolutional networks [C]. Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA: CVPR, 2017: 4700-4708.

    [21] ZHANG ZH CH, LIANG X K, DONG X, et al.. A sparse-view CT reconstruction method based on combination of densenet and deconvolution [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407-1417.

    [22] IOFFES, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]. Proceedings of the 32th International Conference on Machine Learning, Lille, France: ICML, 2015: 448-456.

    [23] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA: AISTATS, 2011: 315-323.

    [24] ZEILER M D, KRISHNAN D, TAYLOR G W, et al.. Deconvolutional networks [C]. Proceedings of the 23th IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA: CVPR, 2010: 2528-2535.

    [25] YU X, FATIH P. Imagining the unimaginable faces by deconvolutional networks [J]. IEEE Transactions on Image Processing, 2018: 2747-2761.

    [26] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia: ICML, 2017: 214-233.

    CLP Journals

    [1] CHEN Yan-tong, CHEN Wei-nan, ZHANG Xian-zhong, LI Yu-yang, WANG Jun-sheng. Fly facial recognition based on deep convolutional neural network[J]. Optics and Precision Engineering, 2020, 28(7): 1558

    [2] XU Ying, GU Yu, PENG Dong-liang, LIU Jun. SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine[J]. Optics and Precision Engineering, 2020, 28(3): 727

    DU Zhen-long, SHEN Hai-yang, SONG Guo-mei, LI Xiao-li. Image style transfer based on improved CycleGAN[J]. Optics and Precision Engineering, 2019, 27(8): 1836
    Download Citation