• Optical Communication Technology
  • Vol. 47, Issue 8, 42 (2021)
LI Chengxi, HUANG Xiang, and ZHOU Lingjun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2021.08.009 Cite this Article
    LI Chengxi, HUANG Xiang, ZHOU Lingjun. Design of on-chip multifunctional controllable infrared optical switch based on phase change materials[J]. Optical Communication Technology, 2021, 47(8): 42 Copy Citation Text show less
    References

    [1] LIN H, OGBUU O, LIU J, et al. Breaking the energy-bandwidth limit of electrooptic modulators: theory and a device proposal[J]. Journal of Lightwave Technology, 2013, 31(24): 4029-4036.

    [2] WUTTIG M, BHASKARAN H, TAUBNER T. Phase-change materials for non-volatile photonic applications[J]. Nature Photonics, 2017, 11(8): 465-476.

    [3] NEDELJKOVIC M, SOREF R, MASHANOVICH G Z. Predictions of free-carrier electroabsorption and electrorefraction in germanium[J]. IEEE Photonics Journal, 2015, 7(3): 1-14.

    [4] LEI B, HU J, JIANG P, et al. Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices[J]. Materials, 2013, 6(11): 5094-5117.

    [5] LI J Y. Telecom-wavelength-transparent Ge-Sb-Se-Te nonvolatile optical phase change materials and devices[D]. Chongqing: Chongqing University, 2018.

    [6] FRANCESCO D L, SOREF R, PASSARO V, et al. Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material[J]. Journal of Lightwave Technology, 2019, 37(13): 3183-3191.

    [7] KARVOUNIS A, GHOLIPOUR B, MACDONALD K F, et al. All-die-lectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 917-924.

    [8] HE Y, ZHANG Y, ZHANG R H, et al. Ultra-compact and broadband silicon polarizer employing a nanohole array structure[J]. Optics Letters, 2020, 46(2): 194-197.

    [9] DONG P, LIU X, CHANDRASEKHAR S, et al. Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 53-58.

    [10] BARWICZ T, WATTS M R, POPOVIC M A, et al. Polarization-trans-parent microphotonic devices in the strong confinement limit[J]. Nature Photonics, 2007, 1(1): 57-60.

    [11] YONG Z, YU H, JIANG X H, et al. Ultra-compact and highly efficient silicon polarization splitter and rotator[J]. APL Photonics, 2016, 1(9): 091304-1-091304-6.

    [12] XIONG Y, XU D X, SCHMID J H, et al. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler[J]. Optics Express, 2014, 22(14): 17458-17465.

    [13] HE Y, ZHANG Y, WANG X D, et al. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler[C]//Optical Fiber Communications Conference and Exhibition (OFC), March 19-23, 2017, Los Angeles, CA, USA. Piscataway: IEEE, 2017: Th1G.6.

    [14] SU Y K, ZHANG Y, QIU C Y, et al. Silicon photonics: silicon photonic platform for passive waveguide devices: materials, fabrication, and applications(adv. mater. technol. 8/2020)[J]. Advanced Materials Technologies, 2020, 5(8): 1901153-1-1901153-10.

    [15] DAI D X, ZHI W, JULIAN N, et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides[J]. Optics Express, 2010, 18(26): 27404-27415.

    [16] ZAFAR H, PAREDES B, DAHLEM M S, et al. Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides[J]. Optics Express, 2018, 26(24): 31850-31860.

    [17] ZHANG Q H, ZHANG Y F, LI J Y, et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit[J]. Optics Letters, 2018, 43(1): 94-97.

    LI Chengxi, HUANG Xiang, ZHOU Lingjun. Design of on-chip multifunctional controllable infrared optical switch based on phase change materials[J]. Optical Communication Technology, 2021, 47(8): 42
    Download Citation