[1] 王之岳, 陈灶灶, 朱利民, 等. 微透镜阵列单点金刚石车削补偿技术[J]. 光学 精密工程, 2022, 30(7): 813-820. doi: 10.37188/OPE.20223007.0813WANGZ Y, CHENZ Z, ZHUL M, et al. Single point diamond turning and compensation for micro-lens array[J]. Opt. Precision Eng., 2022, 30(7): 813-820.(in Chinese). doi: 10.37188/OPE.20223007.0813
[2] 余俊, 王占山, 黄秋实, 等. 极紫外及X射线波段超光滑反射镜的超精密加工与检测[J]. 光学 精密工程, 2022, 30(21): 2688-2697. doi: 10.37188/ope.20223021.2688YUJ, WANGZ S, HUANGQ S, et al. Ultra-precision machining and testing of reflector mirrors for extreme ultraviolet and X-ray[J]. Optics and Precision Engineering, 2022, 30(21): 2688-2697.(in Chinese). doi: 10.37188/ope.20223021.2688
[3] M E MERCHANT. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip. Journal of Applied Physics, 16, 267-275(1945).
[4] M ABEBE, F C APPl. A slip-line solution for negative rake angle cutting. Manufacturing Engineering Transactions, 9, 341-348(1981).
[5] T SHI, S RAMALINGAM. Slip-line solution for orthogonal cutting with a chip breaker and flank wear. International Journal of Mechanical Sciences, 33, 689-704(1991).
[6] H KUDO. Some new slip-line solutions for two-dimensional steady-state machining. International Journal of Mechanical Sciences, 7, 43-55(1965).
[7] X L JIN, Y ALTINTAS. Slip-line field model of micro-cutting process with round tool edge effect. Journal of Materials Processing Technology, 211, 339-355(2011).
[8] L REBAIOLI, G BIELLA, M ANNONI et al. Applicability of an orthogonal cutting slip-line field model for the microscale. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229, 2250-2264(2015).
[9] D J WALDORF, R E DEVOR, S G KAPOOR. A slip-line field for ploughing during orthogonal cutting. Journal of Manufacturing Science and Engineering, 120, 693-699(1998).
[10] P J ARRAZOLA, D UGARTE, X DOMÍNGUEZ. A new approach for the friction identification during machining through the use of finite element modeling. International Journal of Machine Tools and Manufacture, 48, 173-183(2008).
[11] S MANE, S S JOSHI, S KARAGADDE et al. Modeling of variable friction and heat partition ratio at the chip-tool interface during orthogonal cutting of Ti-6Al-4V. Journal of Manufacturing Processes, 55, 254-267(2020).
[12] T ÖZEL. The influence of friction models on finite element simulations of machining. International Journal of Machine Tools and Manufacture, 46, 518-530(2006).
[13] 李晓晨, 岳彩旭, 刘献礼, 等. 考虑刀-屑变摩擦因数的铣削力预测[J]. 振动.测试与诊断, 2022, 42(3): 580-587, 622, 623.LIX C, YUEC X, LIUX L, et al. Prediction modeling of milling force based on variable friction coefficient between tool and chip[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(3): 580-587, 622, 623.(in Chinese)
[14] 张程焱, 张发平, 杨瑞生, 等. 基于局部摩擦因数模型的切削力预测建模[J]. 北京理工大学学报, 2018, 38(1): 6-11, 19.ZHANGC Y, ZHANGF P, YANGR S, et al. Predictive modeling of cutting force based on local friction coefficient model[J]. Transactions of Beijing Institute of Technology, 2018, 38(1): 6-11, 19.(in Chinese)
[15] 谭云成, 杨建东, 夏仁丰. 考虑刀具磨损时的理论切削力[J]. 长春光学精密机械学院学报, 1995(2): 41-45.TANY C, YANGJ D, XIAR F. Theoretical cutting forces when tool wear is considered[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1995(2): 41-45.(in Chinese)
[16] 景岗. 一定切削用量和刀具磨损范围内的切削力数学模型及试验验证[J]. 云南工业大学学报, 1989(1): 48-60.JINGG. Math models of cutting forces within the range of certain utting conditions and tool wear and experimental verification of these models[J]. Journal of Yunnan Polytechnic University, 1989(1): 48-60.(in Chinese)
[17] 张宝金, 宋书善, 陈明. 基于刀具状态的切削力模型研究[J]. 工具技术, 2010, 44(2): 27-30.ZHANGB J, SONGS S, CHENM. Study of cutting force model based on tool condition[J]. Tool Engineering, 2010, 44(2): 27-30.(in Chinese)
[18] Y HUANG, S Y LIANG. Modeling of cutting forces under hard turning conditions considering tool wear effect. Journal of Manufacturing Science and Engineering, 127, 262-270(2005).
[19] D W SMITHEY, S G KAPOOR, R E DEVOR. A new mechanistic model for predicting worn tool cutting forces. Machining Science and Technology, 5, 23-42(2001).
[20] D W SMITHEY, S G KAPOOR, R E DEVOR. A worn tool force model for three-dimensional cutting operations. International Journal of Machine Tools and Manufacture, 40, 1929-1950(2000).
[21] K M LI, S Y LIANG. Modeling of cutting forces in near dry machining under tool wear effect. International Journal of Machine Tools and Manufacture, 47, 1292-1301(2007).
[22] L WU, K J SHA, Y TAO et al. A hybrid deep learning model as the digital twin of ultra-precision diamond cutting for In-process prediction of cutting-tool wear. Applied Sciences, 13, 6675(2023).
[23] P HUANG, W B LEE. Cutting force prediction for ultra-precision diamond turning by considering the effect of tool edge radius. International Journal of Machine Tools and Manufacture, 109, 1-7(2016).
[24] S ZHANG, W J ZONG. FE-SPH hybrid method to simulate the effect of tool inclination angle in oblique diamond cutting of KDP crystal. International Journal of Mechanical Sciences, 196, 106271(2021).
[25] A PRAMANIK, L C ZHANG, J A ARSECULARATNE. Prediction of cutting forces in machining of metal matrix composites. International Journal of Machine Tools and Manufacture, 46, 1795-1803(2006).
[26] Z F WANG, J J ZHANG, Z W XU et al. Crystal anisotropy-dependent shear angle variation in orthogonal cutting of single crystalline copper. Precision Engineering, 63, 41-48(2020).
[27] Z W ZHU, W L ZHU et al. Cutting forces in fast-/ slow tool servo diamond turning of micro-structured surfaces. International Journal of Machine Tools and Manufacture, 136, 62-75(2019).
[28] Z W SUN, S J WANG. An analytical force model for ultra-precision diamond sculpturing of micro-grooves with textured surfaces. International Journal of Mechanical Sciences, 160, 129-139(2019).
[29] СИЛИН С С. Методподобияприрезанииматериалов(1979).
[30] S M SON, H S LIM, J H AHN. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. International Journal of Machine Tools and Manufacture, 45, 529-535(2005).
[31] 雷大江, 岳晓斌, 崔海龙, 等. 切点约束和探针针尖半径补偿的金刚石刀具刃口钝圆半径求解方法[J]. 光学 精密工程, 2017, 25(7): 1807-1814.LEID J, YUEX B, CUIH L, et al. Calculating method for circle radius of diamond tool edge based on tangent point constrain and probe tip radius compensation[J]. Opt. Precision Eng., 2017, 25(7): 1807-1814.(in Chinese)
[32] C F WYEN, W KNAPP, K WEGENER. A new method for the characterisation of rounded cutting edges. The International Journal of Advanced Manufacturing Technology, 59, 899-914(2012).
[33] M AKBARI, W KNAPP, K WEGENER. Comparison of transparent objects metrology through diamond cutting edge radii measurements. CIRP Journal of Manufacturing Science and Technology, 13, 72-84(2016).
[34] N Z YUSSEFIAN, P KOSHY. Parametric characterization of the geometry of honed cutting edges. Precision Engineering, 37, 746-752(2013).
[35] Z J YUAN, M ZHOU, S DONG. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. Journal of Materials Processing Technology, 62, 327-330(1996).
[36] M A RAHMAN, M RAHMAN, A S KUMAR. Chip perforation and ‘burnishing–like’ finishing of Al alloy in precision machining. Precision Engineering, 50, 393-409(2017).
[37] Z C NIU, F F JIAO, K CHENG. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. Journal of Manufacturing Processes, 31, 382-394(2018).
[38] X WU, L LIU, M Y DU et al. Experimental study on the minimum undeformed chip thickness based on effective rake angle in micro milling. Micromachines, 11, 924(2020).
[39] W GRZESIK, B DENKENA, K ŻAK et al. Correlation between friction and wear of cubic borone nitride cutting tools in precision hard machining. Journal of Manufacturing Science and Engineering, 138(2016).
[40] S VENKATACHALAM, S Y LIANG. Effects of ploughing forces and friction coefficient in microscale machining. Journal of Manufacturing Science and Engineering, 129, 274-280(2007).
[41] 宗文俊, 王洪祥, 李旦, 等. 基于有限元法分析超精密切削中的摩擦问题[J]. 制造技术与机床, 2004(8): 88-91.ZONGW J, WANGH X, LID, et al. Analysis on the friction in ultra- precision turning based on finite element method[J]. Manufacturing Technology & Machine Tool, 2004(8): 88-91.(in Chinese)
[42] M H DU, Z CHENG, S S WANG. Finite element modeling of friction at the tool-chip-workpiece interface in high speed machining of Ti6Al4V. International Journal of Mechanical Sciences, 163, 105100(2019).
[43] B DENKENA, J C BECKER, L DE LEÓN-GARCÍA. Study of the influence of the cutting edge microgeometry on the cutting forces and wear behavior in turning operations, 503-508(2005).
[44] C F WYEN, K WEGENER. Influence of cutting edge radius on cutting forces in machining titanium. CIRP Annals, 59, 93-96(2010).
[45] P LI, Z Y CHANG. Numerical modeling of the effect of cutting-edge radius on cutting force and stress concentration during machining. Micromachines, 13, 211(2022).
[46] Ł ŻYŁKA, R FLEJSZAR, P LAJMERT. Influence of cutting-edge microgeometry on cutting forces in high-speed milling of 7075 aluminum alloy. Materials, 16, 3859(2023).