• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 17, Issue 6, 944 (2019)
WANG Hu, DUAN Chongdi, ZHU Zhongbo, and CHEN Gang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda201906.0944 Cite this Article
    WANG Hu, DUAN Chongdi, ZHU Zhongbo, CHEN Gang. Applied analysis of terahertz Orbital Angular Momentum communications[J]. Journal of Terahertz Science and Electronic Information Technology , 2019, 17(6): 944 Copy Citation Text show less
    References

    [1] ZHANG X C,XU J. Introduction to THz wave photonics[M]. New York:Springer, 2010.

    [3] LEWIS R A. Terahertz physics[M]. Cambridge:Cambridge University Press, 2013.

    [4] YAN Y,XIE G,LAVERY M P J,et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014(5):4876.

    [5] HUANG H,XIE G,YAN Y,et al. 100 Tbit/s free-space data link using orbital angular momentum mode division multiplexing combined with wavelength division multiplexing[C]// 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC). Anaheim,CA,USA:IEEE, 2013:1-3.

    [6] PIESIEWICZ R,ISLAM M N,KOCH M,et al. Towards short-range terahertz communication systems:basic communications[C]//2005 18th International Conference on Applied Electromagnetics and Communications. Dubrovnik,Croatia:IEEE, 2005:1-5.

    [7] HIRATA A,KOSUGI T,TAKAHASHI H,et al. 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission[J]. IEEE Transactions on Microwave Theory and Techniques, 2006,54(5):1937-1944.

    [8] HIRATA A,KOSUGI T,TAKAHASHI H,et al. 5.8-km 10-Gbps data transmission over a 120-GHz-band wireless link[C]//2010 IEEE International Conference on Wireless Information Technology and Systems(ICWITS). Honolulu,HI,USA:IEEE,2010:1–4.

    [9] KALLFASS I,ANTES J,SCHNEIDER T,et al. All active MMIC-based wireless communication at 220 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2011,1(2):477-487.

    [10] ANTES J,KONIG S,LEUTHER A,et al. 220 GHz wireless data transmission experiments up to 30 Gbit/s[C]// 2012 IEEE MTT-S International Microwave Symposium Digest. Montreal,QC,Canada:IEEE, 2012:1-3.

    [11] VOINIGESCU S P,CHEVALIER P,HASCH J,et al. Second generation transceivers for D-band radar and data communication applications[C]// IEEE MTT-S International Microwave Symposium. Anaheim,CA,USA:IEEE, 2010:1328-1331.

    [12] KOENIG S,LOPEZ-DIAZ D,ANTES J,et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013,7(12):977-981.

    [13] SUEN J Y,FANG M T,DENNY S P,et al. Modeling of terabit geostationary terahertz satellite links from globally dry locations[J]. IEEE Transactions on Terahertz Science and Technology, 2015,5(2):299-313.

    [14] SUEN J Y. Terabit-per-second satellite links:a path toward ubiquitous terahertz communication[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2016,37(7):615-639.

    [15] HERMELO M F,SHIH P T B,STEEG M,et al. Spectral efficient 64-QAM-OFDM terahertz communication link[J]. Optics Express, 2017,25(16):19360-19370.

    [19] LIN C X,LU B,WANG C,et al. A 2×40 Gbps wireless communication system using 0.14 THz band ortho-mode transducer[C]//2015 40th International Conference on Infrared,Millimeter,and Terahertz Waves(IRMMW-THz). Hong Kong,China:IEEE,2015:1-2.

    [22] CHEN Z,TAN Z Y,HAN Y J,et al. Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2011,47(17):1002-1004.

    [23] ALLEN L,BEIJERSBERGEN M W,SPREEUW R J C,et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes[J]. Physics Review A, 1992,45(11):8185–8189.

    [24] GIBSON G,COURTIAL J,PADGETT M J. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004,12(22):5448–5456.

    [25] SHAPIRO J H,GUHA S,ERKMEN B I. Ultimate channel capacity of free-space optical communications[J]. Journal of Optical Networking, 2005,4(8):501–516.

    [26] THIDE B,THEN H,SJOHOLM J,et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J].Physics Review Letters, 2007,99(8):087701.

    [27] MAHMOULI F E,WALKER S D. 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel[J]. IEEE Wireless Communications Letters, 2013,2(2):223-226.

    [28] GUO C S,LIU X,HE J L,et a1.Optimal annulus structures of optical vortices[J].Optics Express, 2004,12(19):4625-4634.

    [30] TENNANT A,ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012,48(21):1365-1366.

    [31] XIE G,LI L,REN Y,et al. Performance metrics and design considerations for a free-space optical orbital-angularmomentum-multiplexed communication link[J]. Optica, 2015,2(4):357-365.

    [32] WANG J,YANG J Y,FAZAL I M,et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012,6(7):488-496.

    [33] BOZINOVIC N,YUE Y,REN Y,et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science,2013,340(6140):1545-1548.

    [34] REN Y,WANG Z,LIAO P,et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m[J]. Optics Letters, 2016,41(3):622-625.

    [35] WILLNER A E,REN Y,XIE G,et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2017,375(2087):20150439.

    [36] ZHANG Y,FENG W,GE N. On the restriction of utilizing orbital angular momentum in radio communications[C]// 8th International Conference on Communications and Networking. Guilin,China:IEEE, 2013:271-275.

    [37] CUI Q,LI M,YU Z. Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere[J]. Optics Communications, 2014(329):10-14.

    [38] LI S,CHEN S,GAO C,et al. Atmospheric turbulence compensation in orbital angular momentum communications:advances and perspectives[J]. Optics Communications, 2018,408:68-81.

    [39] WEI X,ZHU L,ZHANG Z,et al. Orbit angular momentum multiplexing in 0.1-THz free-space communication via 3D printed spiral phase plates[C]// Conference on Lasers and Electro-Optics(CLEO). San Jose,CA,USA:IEEE, 2014.

    [40] ZHU L,WEI X,WANG J,et al. Experimental demonstration of basic functionalities for 0.1-THz Orbital Angular Momentum(OAM) communications[C]// Optical Fiber Communication Conference. San Francisco,CA,USA:IEEE, 2014.

    [41] STEFANI A,FLEMING S C,KUHLMEY B T. Terahertz orbital angular momentum modes with flexible twisted hollow core antiresonant fiber[J]. APL Photonics, 2018,3(5):051708.

    [42] ZHOU H,DONG J,YAN S,et al. Generation of terahertz vortices using metasurface with circular slits[J]. IEEE Photonics Journal, 2014,6(6):1-7.

    [43] JIN J,LUO J,ZHANG X,et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports,2016(6):24286.

    [44] ZHAO H,QUAN B,WANG X,et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, 2017,5(5):1726-1732.

    [45] SHI Y,ZHANG Y. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray[J]. IEEE Access, 2018(6):5341-5347.

    WANG Hu, DUAN Chongdi, ZHU Zhongbo, CHEN Gang. Applied analysis of terahertz Orbital Angular Momentum communications[J]. Journal of Terahertz Science and Electronic Information Technology , 2019, 17(6): 944
    Download Citation