• Chinese Optics Letters
  • Vol. 23, Issue 1, 011402 (2025)
Zhenqian Li1,2, Zongyu Lu1, Lingfeng Wan1, Yuan Ru1,2..., Lisheng Chen1,2,3 and Liufeng Li1,3,*|Show fewer author(s)
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan 430071, China
  • show less
    DOI: 10.3788/COL202523.011402 Cite this Article Set citation alerts
    Zhenqian Li, Zongyu Lu, Lingfeng Wan, Yuan Ru, Lisheng Chen, Liufeng Li, "Ultrastable Nd:YAG 1064-nm lasers with 2.1 × 10−16 frequency stability based on a field-programmable gate array frequency-locked system," Chin. Opt. Lett. 23, 011402 (2025) Copy Citation Text show less
    References

    [1] B. C. Young, F. C. Cruz, W. M. Itano et al. Visible lasers with subhertz linewidths. Phys. Rev. Lett., 82, 3799(1999).

    [2] B. P. Abbott, R. Abbott, T. D. Abbott et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102(2016).

    [3] K. Danzmann. LISA— an ESA cornerstone mission for the detection and observation of gravitational waves. Adv. Space Res., 32, 1233(2003).

    [4] S. Häfner, S. Falke, C. Grebing et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett., 40, 2112(2015).

    [5] W. Zhang, J. M. Robinson, L. Sonderhouse et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett., 119, 243601(2017).

    [6] Q. Chen, E. Magoulakis, S. Schiller. High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations. Phys. Rev. D, 93, 022003(2016).

    [7] R. Xiao, Y. Xu, Y. Wang et al. Transportable 30 cm optical cavity based ultrastable lasers with beating instability of 2 × 10-16. Appl. Phys. B, 128, 220(2022).

    [8] C. Yan, H. Shi, Y. Yao et al. Automatic, long-term frequency-stabilized lasers with sub-hertz linewidth and 10−16 frequency instability. Chin. Opt. Lett., 20, 070201(2022).

    [9] J. Bu, D. Jiao, G. Xu et al. Fast auto-relock methods for ultra-stable lasers. Infrared Phys. Technol., 134, 104915(2023).

    [10] Y. Luo, H. Li, H.-C. Yeh. Note: Digital laser frequency auto-locking for inter-satellite laser ranging. Rev. Sci. Instrum., 87, 056105(2016).

    [11] A. Roy, L. Sharma, I. Chakraborty et al. An FPGA based all-in-one function generator, lock-in amplifier and auto-relockable PID system. J. Instrum., 14, P05012(2019).

    [12] A. Didier, S. Ignatovich, E. Benkler et al. 946-nm Nd:YAG digital-locked laser at 1.1 × 10−16 in 1 s and transfer-locked to a cryogenic silicon cavity. Opt. Lett., 44, 1781(2019).

    [13] W. Zhang, M. J. Martin, C. Benko et al. Reduction of residual amplitude modulation to 1 × 10−6 for frequency modulation and laser stabilization. Opt. Lett., 39, 1980(2014).

    [14] G. Mueller, P. McNamara, I. Thorpe et al. Laser frequency stabilization for LISA(2005).

    [15] G. Heinzel, C. Braxmaier, K. Danzmann et al. LISA interferometry: recent developments. Class. Quantum Grav., 23, S119(2006).

    [16] J. Stacey, G. P. Barwood, A. Spampinato et al. Laser frequency stabilisation for the LISA mission using a cubic cavity. Proc. SPIE, 12777, 266(2023).

    [17] B. Bachman, G. De Vine, J. Dickson et al. Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission. J. Phys. Conf. Ser., 840, 012011(2017).

    [18] M. Tinto, J. W. Armstrong. Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation. Phys. Rev. D, 59, 102003(1999).

    [19] D. A. Shaddock, B. Ware, R. E. Spero et al. Postprocessed time-delay interferometry for LISA. Phys. Rev. D, 70, 081101(R)(2004).

    [20] G. de Vine, B. Ware, K. McKenzie et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys. Rev. Lett., 104, 211103(2010).

    [21] M. Tinto, S. V. Dhurandhar. Time-delay interferometry. Living Rev. Relativ., 24, 1(2020).

    [22] G. Wang, W. Ni. Time-delay interferometry for ASTROD-GW. Chin. Astronom. Astrophys., 36, 211(2012).

    [23] J. Peng, L. Li, L. Chen. A spaceborne neodymium-doped yttrium aluminum garnet laser with nonplanar-ring-oscillator configuration. Int. J. Modern Phys. A, 36, 2140007(2021).

    [24] L. Li, J. Wang, J. Bi et al. Ultra-stable 1064-nm neodymium-doped yttrium aluminum garnet lasers with 2.5 × 10−16 frequency instability. Rev. Sci. Instrum., 92, 043001(2021).

    [25] R. W. P. Drever, J. L. Hall, F. V. Kowalski et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97(1983).

    [26] F. Allard, I. Maksimovic, M. Abgrall et al. Automatic system to control the operation of an extended cavity diode laser. Rev. Sci. Instrum., 75, 54(2004).

    [27] E. L. Wooten, K. M. Kissa, A. Yi-Yan et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron., 6, 69(2000).

    [28] N. C. Wong, J. L. Hall. Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection. J. Opt. Soc. Am. B, 2, 1527(1985).

    [29] K. Numata, A. Kemery, J. Camp. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett., 93, 250602(2004).

    Zhenqian Li, Zongyu Lu, Lingfeng Wan, Yuan Ru, Lisheng Chen, Liufeng Li, "Ultrastable Nd:YAG 1064-nm lasers with 2.1 × 10−16 frequency stability based on a field-programmable gate array frequency-locked system," Chin. Opt. Lett. 23, 011402 (2025)
    Download Citation