[1] PALAZON F, AKKERMAN Q A, PRATO M, et al. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water[J]. ACS Nano, 2016,10(1): 1224–1230.
[2] YANG G L, FAN Q S, CHEN B K, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability[J]. J Mater Chem C, 2016, 4(48): 11387–11391.
[3] XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications[J]. Nano Res, 2019, 12(5): 1049–1054.
[4] ZHANG L Q, LIN H, WANG C Y, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: Mechanically-driven CsPbBr3 nanocrystallization in glass[J]. Nanoscale, 2020, 12(16): 8801–8808.
[5] YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J]. Chem Eng J,2020, 398: 125616.
[6] TONG Y, WANG Q, MEI E R, et al. One-pot synthesis of CsPbX3(X=Cl, Br, I)@ zeolite: a potential material for wide-color-gamut backlit displays and upconversion emission[J]. Adv Opt Mater, 2021,9(11): 2100012.
[7] ZHANG Q G, SUN X C, ZHENG W L, et al. Band gap engineering toward wavelength tunable CsPbBr3 nanocrystals for achieving rec.2020 displays[J]. Chem Mater, 2021, 33(10): 3575–3584.
[8] ZHANG Q G, ZHENG W L, WAN Q, et al. Confined synthesis of stable and uniform CsPbBr3 nanocrystals with high quantum yield up to 90% by high temperature solid-state reaction[J]. Adv Opt Mater,2021, 9(11): 2002130.
[9] HAN Y H, SUN J Y, YE S, et al. A stimuli responsive material of perovskite quantum dots composited nano-porous glass[J]. J Mater Chem C, 2018, 6(41): 11184–11192.
[10] ENKE D, JANOWSKI F, SCHWIEGER W. Porous glasses in the 21st century––A short review[J]. Microporous Mesoporous Mater, 2003,60(1–3): 19–30.
[11] HUANG S Q, WANG B, ZHANG Q, et al. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals[J]. Adv Opt Mater, 2018, 6(6): 1701106.
[12] LV X J, LIN H, XU J, et al. K+-doping-induced highly efficient red emission in CsPb(Br,I)3 quantum dot glass toward Rec. 2020 displays[J]. Opt Lett, 2022, 47(6): 1431–1434.
[13] RABOUW F T, KAMP M, VAN DIJK-MOES R J A, et al. Delayed exciton emission and its relation to blinking in CdSe quantum dots[J]. Nano Lett, 2015, 15(11): 7718–7725.
[14] GAO Y, PENG X G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands[J]. J Am Chem Soc, 2015, 137(12): 4230–4235.
[15] ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals[J]. Adv Opt Mater, 2020,8(18): 2000585.