
Search by keywords or author
- Acta Physica Sinica
- Vol. 69, Issue 9, 096103-1 (2020)

Fig. 1. Positron lifetime of vacancies and potassium-containing vacancies in tungsten lattice.

Fig. 2. Distribution of positron annihilation region: (a) 9 × 9 × 9 BCC tungsten lattice supercell with a vacancy; (b) W-GB-1 supercell; (c) W-GB-1 supercell with a vacancy at the GBs; (d) W-GB-1 supercell with a potassium at the GBs.

Fig. 3. S -E distribution and fitting curves of PMW and W-K samples with different potassium content.

Fig. 4. S -W distribution of PMW and W-K samples with different potassium content.
|
Table 1.
Grain boundary (GB) and dislocation line (DL) model for positron annihilation lifetime calculation
正电子湮没寿命计算中建立的晶界和位错模型
|
Table 2.
Positron annihilation lifetime of grain boundary and dislocation with vacancies or potassium atoms.
晶界和位错包含空位或钾原子时的正电子湮没寿命值
|
Table 3.
Two-component positron lifetime of W-K samples with different potassium content.
不同钾含量的钨钾合金样品的双组分正电子寿命值
|
Table 4.
Dislocation and vacancy clusters in W-K samples with potassium content.
不同钾含量的钨钾合金样品中位错和空位团簇
|
Table 5.
Fitted values of S parameters of W-K samples with different potassium content.
不同钾含量的钨合金样品的S参数拟合
|
Table 6.
Positron diffusion length in tungsten alloy samples with different potassium content.
不同钾含量的钨合金样品中正电子扩散长度

Pei-Yuan Zhang, Ai-Hong Deng, Xue-Fen Tian, Jun Tang. Study of defects in potassium-doped tungsten alloy by positron annihilation technique [J]. Acta Physica Sinica, 2020, 69(9): 096103-1
Download Citation
Set citation alerts for the article
Please enter your email address