• Acta Physica Sinica
  • Vol. 69, Issue 9, 096103-1 (2020)
Pei-Yuan Zhang1, Ai-Hong Deng1、*, Xue-Fen Tian1, and Jun Tang2
Author Affiliations
  • 1College of Physics, Sichuan University, Chengdu 610064, China
  • 2Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
  • show less
    DOI: 10.7498/aps.69.20191792 Cite this Article
    Pei-Yuan Zhang, Ai-Hong Deng, Xue-Fen Tian, Jun Tang. Study of defects in potassium-doped tungsten alloy by positron annihilation technique[J]. Acta Physica Sinica, 2020, 69(9): 096103-1 Copy Citation Text show less
    Positron lifetime of vacancies and potassium-containing vacancies in tungsten lattice.
    Fig. 1. Positron lifetime of vacancies and potassium-containing vacancies in tungsten lattice.
    Distribution of positron annihilation region: (a) 9 × 9 × 9 BCC tungsten lattice supercell with a vacancy; (b) W-GB-1 supercell; (c) W-GB-1 supercell with a vacancy at the GBs; (d) W-GB-1 supercell with a potassium at the GBs.
    Fig. 2. Distribution of positron annihilation region: (a) 9 × 9 × 9 BCC tungsten lattice supercell with a vacancy; (b) W-GB-1 supercell; (c) W-GB-1 supercell with a vacancy at the GBs; (d) W-GB-1 supercell with a potassium at the GBs.
    S-E distribution and fitting curves of PMW and W-K samples with different potassium content.
    Fig. 3. S-E distribution and fitting curves of PMW and W-K samples with different potassium content.
    S-W distribution of PMW and W-K samples with different potassium content.
    Fig. 4. S-W distribution of PMW and W-K samples with different potassium content.
    编号ΣGB planeGB typeRotation axisAngle/(°)
    W-GB-15$ \langle 210 \rangle $twistz(001) 53.15
    W-GB-213$ \langle 510 \rangle $twistz(001) 22.61
    W-GB-35$ \{0\bar1 5\} $tiltx(100) 22.61
    W-GB-413$ \{0\bar15\} $tiltx(100) 53.15
    编号Slip plane(z) Burgers vector[b] Dislocation line[y] Dislocation typeb-y Angle/(°)
    W-DL-1$ (\bar101) $(111)/2$ (\bar 12\bar 1) $EDGE90
    W-DL-2$ (\bar101) $(111)/2(111)SCREW0
    W-DL-3$ (\bar101) $(111)/2(010)MIX54.73
    Table 1.

    Grain boundary (GB) and dislocation line (DL) model for positron annihilation lifetime calculation

    正电子湮没寿命计算中建立的晶界和位错模型

    编号Intact/psVac.1/psVac.9/psK1/psK9/ps
    W-GB-1116.6198.2297.4110.6108.4
    W-GB-2117.9198.0297.2116.4111.7
    W-GB-3135.2204.8304.4142.3144.1
    W-GB-4142.2198.0317.3141.0144.6
    W-DL-1133.9160.3309.7133.9134.2
    W-DL-2106.5194.7324.0104.7105.8
    W-DL-3123.4158.0315.4123.4123.4
    Table 2.

    Positron annihilation lifetime of grain boundary and dislocation with vacancies or potassium atoms.

    晶界和位错包含空位或钾原子时的正电子湮没寿命值

    钾含量/ppm编号${\tau _{{\rm{1, }}\exp }}$/ps ${I_{1, \exp }}$/% ${\tau _{{\rm{2, }}\exp }}$/ps ${I_{2, \exp }}$/% 平均寿命 ${\tau _{{\rm{av}}}}$/ps 捕获率 $\kappa $/ns–1计算体寿命 $\tau _{\rm{1}}^{{\rm{cal}}}$/ps
    46A1123.474.62296.225.38167.31.199997.2
    82B1123.375.68305.124.32167.51.175297.4
    122C1140.172.42332.627.58193.21.139597.7
    144D1143.277.07328.322.93185.60.9028100.1
    Table 3.

    Two-component positron lifetime of W-K samples with different potassium content.

    不同钾含量的钨钾合金样品的双组分正电子寿命值

    钾含量/ppm编号位错捕获率 ${\kappa _1}$/ps–1空位团簇捕获率 ${\kappa _2}$/ps–1位错密度 ${C_{{\rm{dis}}}}$/1010cm2空位团簇浓度 ${C_{{\rm{cl}}}}$/10–7
    46A10.009120.005050.82891.515
    82B10.008950.004740.81361.424
    122C10.033590.015113.05344.538
    144D10.044000.014893.99914.470
    Table 4.

    Dislocation and vacancy clusters in W-K samples with potassium content.

    不同钾含量的钨钾合金样品中位错和空位团簇

    钾含量/ppm编号第一层厚度/nm第一层S1第二层S2
    46A2100.45210.4424
    82B2110.45200.4406
    122C2130.45210.4455
    0PMW100.40500.3880
    Table 5.

    Fitted values of S parameters of W-K samples with different potassium content.

    不同钾含量的钨合金样品的S参数拟合

    钾含量/ppm编号寿命谱 $L_{{\rm{ +, eff}}}^{{\rm{cal}}}$/nm 编号第一层 $L_{ +, {\rm{eff}}}^1$/nm 第二层 $L_{ +, {\rm{eff}}}^2$/nm
    46A177.59A22.73 ± 0.8959.75 ± 9.96
    82B178.39B24.98 ± 1.0658.61 ± 7.86
    122C149.22C21.65 ± 1.5637.44 ± 7.72
    0PMW6.50 ± 0.29109.32 ± 5.46
    Table 6.

    Positron diffusion length in tungsten alloy samples with different potassium content.

    不同钾含量的钨合金样品中正电子扩散长度

    Pei-Yuan Zhang, Ai-Hong Deng, Xue-Fen Tian, Jun Tang. Study of defects in potassium-doped tungsten alloy by positron annihilation technique[J]. Acta Physica Sinica, 2020, 69(9): 096103-1
    Download Citation