• Acta Photonica Sinica
  • Vol. 48, Issue 10, 1016001 (2019)
CHEN Ting1、2、*, HU Xiao-bo3, XU Yan-qiao1, JIANG Wei-hui1、2, JIANG Wan2、3, and XIE Zhi-xiang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194810.1016001 Cite this Article
    CHEN Ting, HU Xiao-bo, XU Yan-qiao, JIANG Wei-hui, JIANG Wan, XIE Zhi-xiang. Hydrothermal Synthesis and the Study of Fluorescence Properties of Quaternary Ag-In-Zn-S Quantum Dots[J]. Acta Photonica Sinica, 2019, 48(10): 1016001 Copy Citation Text show less
    References

    [1] YAMIJALA S S, BANDYOPADHYAY A, PATI S K. Structural stability, electronic, magnetic, and optical properties of rectangular graphene and boron nitride quantum dots: effects of size, substitution, and electric field[J]. The Journal of Physical Chemistry C, 2013, 117(44): 23295-23304.

    [2] HU Xing, ZHANG Quan-xin, HUANG Xiao-ming, et al. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells[J]. Journal of Materials Chemistry, 2011, 21(40): 15903-15905.

    [3] FAN Jing-wun, VANKAYALA R, CHANG C L, et al. Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots[J]. Nanotechnology, 2015, 26(21): 215703.

    [4] JIANG Tong-tong, SONG Jiang-lu-qi, WANG Hui-jie, et al. Aqueous synthesis of color tunable Cu doped Zn-In-S/ZnS nanoparticles in the whole visible region for cellular imaging[J]. Journal of Materials Chemistry B, 2015, 3(11): 2402-2410.

    [5] DENG Da-wei, CAO Jie, QU Ling-zhi, et al. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging[J]. Physical Chemistry Chemical Physics, 2013, 15(14): 5078-5083.

    [6] REGULACIO M D, WIN K Y, LO S L, et al. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications[J]. Nanoscale, 2013, 5(6): 2322-2327.

    [7] TORIMOTO T, ADACHI T, OKAZAKI K I, et al. Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore[J]. Journal of the American Chemical Society, 2007, 129(41): 12388-12389.

    [8] KAMEYAMA T, TAKAHASHI T, MACHIDA T, et al. Controlling the electronic energy structure of ZnS-AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution[J]. The Journal of Physical Chemistry C, 2015, 119(44): 24740-24749.

    [9] YOON H C, OH J H, KO M, et al. Synthesis and characterization of green Zn-Ag-In-S and red Zn-Cu-In-S quantum dots for ultrahigh color quality of down-converted white LEDs[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7342-7350.

    [10] TANG Xiao-sheng, HO W B A, XUE Jun-min. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties[J]. Journal of Physical Chemistry C, 2012, 116(17): 9769-9773.

    [11] YANG Wen-tao, GUO Wei-sheng, ZHANG Ting-bin, et al. Synthesis of aqueous AgInS/ZnS@PEI as a self-indicating nonviral vector for plasmid DNA self-tracking delivery[J]. Journal of Materials Chemistry B, 2015, 3(43): 8518-8527.

    [12] DENG Da-wei, QU Ling-zhi, CHENG Zhi-qiang, et al. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots and their unique precursor S/In ratio-dependent spectral shifts[J]. Journal of Luminescence, 2014, 146: 364-370.

    [13] PEARSON R G. Hard and soft acids and bases[J]. Journal of the American Chemical society, 1963, 85(22): 3533-3539.

    [14] HU Xiao-bo, CHEN Ting, XU Yan-qiao, et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission[J]. Journal of Luminescence, 2018, 200: 189-195.

    [15] DING Yong-ling, SHEN S Z, SUN Hua-dong, et al. Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions[J]. Sensors and Actuators B: Chemical, 2014, 203: 35-43.

    [16] LI Liang, QIAN Hui-feng, REN Ji-cun. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature[J]. Chemical Communications, 2005, 36(4): 528-530.

    [17] LIU Yan-Fan, YU Jun-sheng. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands[J]. Journal of Colloid and Interface Science, 2009, 333(2): 690-698.

    [18] JING Li-hong, KERSHAW S V, LI Yi-lin, et al. Aqueous based semiconductor nanocrystals[J]. Chemical reviews, 2016, 116(18): 10623-10730.

    [19] CHENG Jing-wei, LI Dong-mei, CHENG Tao, et al. Aqueous synthesis of high-fluorescence CdZnTe alloyed quantum dots[J]. Journal of Alloys and Compounds, 2014, 589: 539-544.

    [20] UEMATSU T, KITAJIMA H, KOHMA T, et al. Tuning of the fluorescence wavelength of CdTe quantum dots with 2 nm resolution by size-selective photoetching[J]. Nanotechnology, 2009, 20(21): 215302.

    [21] LEI Shui-jin, WANG Chun-ying, LIU Lei, et al. Spinel indium sulfide precursor for the phase-selective synthesis of Cu-In-S nanocrystals with zinc-blende, wurtzite, and spinel structures[J]. Chemistry of Materials, 2013, 25(15): 2991-2997.

    [22] FENG Jian, YANG Xiu-rong. Tunable fluorescence emission of ternary nonstoichiometric Ag-In-S alloyed nanocrystals[J]. Journal of Nanoparticle Research, 2012, 14(8): 1044.

    [23] WANG Qi-sui, FANG Ting-ting, LIU Peng, et al. Direct synthesis of high-quality water-soluble CdTe: Zn2+ quantum dots[J]. Inorganic chemistry, 2012, 51(17): 9208-9213.

    [24] CHIREA M, PEREIRA C M, SILVA F. Hydrogen bonding: a bottom-up approach for the synthesis of films composed of gold nanoparticles[C]. Journal of Nano Research, 2008, 2: 115-128

    [25] HUANG Peng-cheng, JIANG Qin, YU Ping, et al. Alkaline post-treatment of Cd (II)-glutathione coordination polymers: toward green synthesis of water-soluble and cytocompatible CdS quantum dots with tunable optical properties[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5239-5246.

    [26] ZHANG Xian-hua, XIE Su-yuan, NI Zi-mian, et al. Controllable growth of In(OH)3 nanorods with rod-in-rod structure in a surfactant solution[J]. Inorganic Chemistry Communications, 2003, 6(12): 1445-1447.

    [27] WANG Xin, XIE Cui-ping, ZHONG Jia-song, et al. Synthesis and temporal evolution of Zn-doped AgInS2 quantum dots[J]. Journal of Alloys and Compounds, 2015, 648: 127-133.

    [28] XIANG Wei-dong, XIE Cui-ping, WANG Jing, et al. Studies on highly luminescent AgInS2 and Ag-Zn-In-S quantum dots[J]. Journal of Alloys and Compounds, 2014, 588: 114-121.

    [29] DAI Mei-lin, OGAWA S, KAMEYAMA T, et al. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles[J]. Journal of Materials Chemistry, 2012, 22(25): 12851-12858.

    [30] KANG Xiao-jiao, HUANG Li-jian, YANG Yan-chun, et al. Scaling up the aqueous synthesis of visible light emitting multinary AgInS2/ZnS core/shell quantum dots[J]. The Journal of Physical Chemistry C, 2015, 119(14): 7933-7940.

    [31] GUO Wei-sheng, CHEN Na, DONG Chun-hong, et al. Synthesis of Zn-Cu-In-S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging[J]. Theranostics, 2013, 3(2): 99.

    [32] SONG Jiang-lu-qi, MA Chao, ZHANG Wen-zhe, et al. Bandgap and structure engineering via cation exchange: from binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24826-24836.

    [33] MICHALSKA M, ABOULAICH A, MEDJAHDI G, et al. Amine ligands control of the optical properties and the shape of thermally grown core/shell CuInS2/ZnS quantum dots[J]. Journal of Alloys and Compounds, 2015, 645: 184-192.

    [34] TSUJI I, KATO H, KOBAYASHI H, et al. Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures[J]. Journal of the American Chemical Society, 2004, 126(41): 13406-13413.

    [35] MAO Bao-dong, CHUANG C H, LU Feng, et al. Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals[J]. The Journal of Physical Chemistry C, 2012, 117(1): 648-656.

    [36] WANG Xing, LIANG Zhu-rong, XU Xue-qing, et al. A high efficient photoluminescence Zn-Cu-In-S/ZnS quantum dots with long lifetime[J]. Journal of Alloys and Compounds, 2015, 640: 134-140.

    [37] ZHANG Bu-tian, WANG Yu-cheng, YANG Cheng-bin, et al. The composition effect on the optical properties of aqueous synthesized Cu-In-S and Zn-Cu-In-S quantum dot nanocrystals[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 25133-25141.

    CHEN Ting, HU Xiao-bo, XU Yan-qiao, JIANG Wei-hui, JIANG Wan, XIE Zhi-xiang. Hydrothermal Synthesis and the Study of Fluorescence Properties of Quaternary Ag-In-Zn-S Quantum Dots[J]. Acta Photonica Sinica, 2019, 48(10): 1016001
    Download Citation