[1] Arimoto Y, Toyoshima M, Toyoda M et al. Preliminary result on laser communication experiment using (ETS-VI)[J]. Proceedings of SPIE, 2381, 151-158(1995). http://spie.org/Publications/Proceedings/Paper/10.1117/12.207423
[2] Oppenhauser G, Wittig M E. European SILEX project: concept, performance, status, and planning[J]. Proceedings of SPIE, 1218, 27-37(1990). http://spie.org/Publications/Proceedings/Paper/10.1117/12.18171
[3] Tolker-Nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proceedings of SPIE, 4635, 1-15(2002). http://spie.org/Publications/Proceedings/Paper/10.1117/12.464105
[4] Smutny B, Lange R, Kämpfner H et al. In-orbit verification of optical inter-satellite communication links based on homodyne BPSK[J]. Proceedings of SPIE, 6877, 687702(2008). http://spie.org/Publications/Proceedings/Paper/10.1117/12.774673
[5] Smutny B, Kaempfner H, Muehlnikel G et al. 5.6 Gbps optical intersatellite communication link[J]. Proceedings of SPIE, 7199, 719906(2009). http://spie.org/x648.xml?product_id=812209
[6] Boroson D M, Robinson B S, Murphy D V et al. Overview and results of the lunar laser communication demonstration[J]. Proceedings of SPIE, 8971, 89710S(2014). http://proceedings.spiedigitallibrary.org/article.aspx?articleid=1841892
[7] Boroson D M, Robinson B S. The lunar laser communication demonstration: NASA's first step toward very high data rate support of science and exploration missions[J]. Space Science Reviews, 185, 115-128(2014). http://link.springer.com/article/10.1007/s11214-014-0122-y
[8] Heine F, Pimentel P M, Rochow C et al. The European data relay system and Alphasat to T-AOGS space to ground links, status, and achievements in 2017[J]. Proceedings of SPIE, 10524, 105240T(2018).
[9] Kazemi A A. Intersatellite laser communication systems for harsh environment of space[J]. Proceedings of SPIE, 8720, 872010(2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1693648
[10] Böhmer K, Gregory M, Heine F et al. Laser communication terminals for the European data relay system[J]. Proceedings of SPIE, 8246, 82460D(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.906798
[11] Chishiki Y, Yamakawa S, Takano Y et al. Overview of optical data relay system in JAXA[J]. Proceedings of SPIE, 9739, 97390D(2016). http://proceedings.spiedigitallibrary.org/data/Conferences/SPIEP/87399/97390D.pdf
[12] Edwards B L, Israel D J. Update on NASA's laser communications relay demonstration project 2018. [C]∥2018 SpaceOps Conference, May 28-June 1, 2018, Marseille, France. USA: AIAA, 1-11(2018).
[13] Luzhansky E, Edwards B, Israel D et al. Overview and status of the laser communication relay demonstration[J]. Proceedings of SPIE, 9739, 97390C(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2504553
[14] Wu F, Yu S Y, Ma Z T et al. Correction of pointing angle deviation and in-orbit validation in satellite-ground laser communication links[J]. Chinese Journal of Lasers, 41, 0605008(2014).
[15] Chen W B, Sun J F, Hou X et al. 5.12 Gbps optical communication link between LEO satellite and ground station. [C]∥2017 IEEE International Conference on Space Optical Systems and Applications(ICSOS), November 14-16, 2017, Naha, Japan. New York: IEEE, 260-263(2017).
[16] Koga M, Mizutori A. Decision-directed Costas loop stable homodyne detection for 10-Gb/s BPSK signal transmission[J]. IEEE Photonics Technology Letters, 26, 319-322(2014). http://ieeexplore.ieee.org/document/6665004/
[17] Zhu Z Z, Zhou H J, Xie W L et al. 10-Gb/s homodyne receiver based on Costas loop with enhanced dynamic performance. [C]∥2017 16th International Conference on Optical Communications and Networks (ICOCN), August 7-10, 2017, Wuzhen, China. New York: IEEE, 17446085(2017).
[18] Chang S, Tong S F, Jiang H L et al. Optical phase-locked loop technology in inter-satellite high-speed coherent laser communication systems[J]. Acta Optica Sinica, 37, 0206004(2017).
[19] Zhou H J, Zhu Z Z, Xie W L et al. Investigation of signal power splitting ratio for BPSK homodyne receiver with an optical Costas loop[J]. Optical Engineering, 57, 086111(2018).
[20] Liu Y, Tong S F, Chang S et al. Carrier recovery technology of optical phase locked loop in coherent laser communication system[J]. Acta Optica Sinica, 38, 0106001(2018).
[21] Kazovsky L G. Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements[J]. Journal of Lightwave Technology, 3, 1238-1247(1985). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1485140
[22] Yue C L, Li J W, Sun J F et al. Homodyne coherent optical receiver for intersatellite communication[J]. Applied Optics, 57, 7915-7923(2018). http://www.onacademic.com/detail/journal_1000040491268410_5c99.html
[23] Electronic Systems. AES-[J]. Prabhu V K. PSK performance with imperfect carrier phase recovery. IEEE Transactions on Aerospace, 12, 275-286(1976).
[24] Norimatsu S, Iwashita K, Noguchi K. 10 Gbit/s optical PSK homodyne transmission experiments using external cavity DFB LDs[J]. Electronics Letters, 26, 648-649(1990). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=82768
[25] Olsson N A. Lightwave systems with optical amplifiers[J]. Journal of Lightwave Technology, 7, 1071-1082(1989). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=29634
[26] Yariv A. Signal-to-noise considerations in fiber links with periodic or distributed optical amplification[J]. Optics Letters, 15, 1064-1066(1990). http://www.ncbi.nlm.nih.gov/pubmed/19770998