• Optics and Precision Engineering
  • Vol. 30, Issue 1, 1 (2022)
Zhihao LIU1, Weiqi JIN1,*, Li LI1, Mozhou SHA2, and Qin GUO2
Author Affiliations
  • 1MoE Key Lab of Photoelectronic Imaging Technology and System, Shool of Optics and Photonics, Beijing Institute of Technology, Beijing0008, China
  • 2Beijng Electro-Mechanical Engineering Institute, Beijing100074, China
  • show less
    DOI: 10.37188/OPE.20223001.0001 Cite this Article
    Zhihao LIU, Weiqi JIN, Li LI, Mozhou SHA, Qin GUO. Four-band coaxial imaging experimental platform and its image fusion methods[J]. Optics and Precision Engineering, 2022, 30(1): 1 Copy Citation Text show less
    Four-band coaxial imaging optical system
    Fig. 1. Four-band coaxial imaging optical system
    Four-band coaxial imaging experimental platform
    Fig. 2. Four-band coaxial imaging experimental platform
    Four-band original images captured at the same time
    Fig. 3. Four-band original images captured at the same time
    Preprocessed four-band images
    Fig. 4. Preprocessed four-band images
    Flow chart of dual-band natural color fusion algorithm
    Fig. 5. Flow chart of dual-band natural color fusion algorithm
    Dual-band natural color fusion images
    Fig. 6. Dual-band natural color fusion images
    Flow chart of four-band natural color fusion algorithm
    Fig. 7. Flow chart of four-band natural color fusion algorithm
    Four-band natural color fusion images
    Fig. 8. Four-band natural color fusion images
    Q-T relationship curve
    Fig. 9. Q-T relationship curve
    Flow chart of dual-band temperature measurement software
    Fig. 10. Flow chart of dual-band temperature measurement software
    Temperature image generated by MW and LW IR images
    Fig. 11. Temperature image generated by MW and LW IR images
    Single-point stability results of temperature measurement
    Fig. 12. Single-point stability results of temperature measurement
    Result of experiment on the sea
    Fig. 13. Result of experiment on the sea
    Result of experiment on the land
    Fig. 14. Result of experiment on the land
    分束镜反射率参数(入射角为45°)透过率参数(入射角为45°)
    波段/μm反射率/%波段/μm反射率/%
    第一分束镜0.4~1.7>953~12>92
    第二分束镜3~5>988~12>92
    第三分束镜0.4~0.9>980.9~1.7>92
    Table 1. Film design of semi-reflective mirror
    探测器波段分辨率像素尺寸工作波段NETD
    可见光+近红外1 280 H×1 024 V14 μm×14 μm0.4~1.1 μm-
    短波红外640 H×512 V15 μm×15 μm0.9~1.7 μm-
    中波红外640 H×512 V-3~14 μm≤40 mK@25 ℃,F#1.0
    长波红外640 H×512 V-8~14 μm≤40 mK@25 ℃,F#1.0
    Table 2. Detector parameters of four-band coaxial imaging experimental platform

    黑体

    温度/℃

    双波段测温/℃

    相对

    误差/%

    中波

    测温/℃

    长波

    测温/℃

    2019.661.7116.9117.49
    2525.150.6023.2923.16
    3031.013.3627.8228.85
    3535.892.5533.6333.74
    4040.160.4138.0641.49
    4545.290.6444.6946.02
    5049.630.7451.0251.41
    5555.060.1056.2956.62
    6060.530.8862.1761.67
    6565.711.0967.4066.93
    7070.540.7772.5971.94
    7576.712.2877.6877.30
    8081.732.1782.3482.55
    Table 3. Results of dual-band and single-band temperature measurement
    Zhihao LIU, Weiqi JIN, Li LI, Mozhou SHA, Qin GUO. Four-band coaxial imaging experimental platform and its image fusion methods[J]. Optics and Precision Engineering, 2022, 30(1): 1
    Download Citation