• Frontiers of Optoelectronics
  • Vol. 6, Issue 2, 228 (2013)
Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU*, and Kunji CHEN
Author Affiliations
  • School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1007/s12200-013-0324-z Cite this Article
    Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU, Kunji CHEN. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Frontiers of Optoelectronics, 2013, 6(2): 228 Copy Citation Text show less
    References

    [1] Surana K, Lepage H, Lebrun J M, Doisneau B, Bellet D, Vandroux L, Le Carval G, Baudrit M, Thony P, Mur P. Film-thicknessdependent conduction in ordered Si quantum dot arrays. Nanotechnology, 2012, 23(10): 105401-105410

    [2] Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M. Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Japanese Journal of Applied Physics, 2007, 46(35): L833-L835

    [3] Baron T, Gentile P, Magnea N, Mur P. Single-electron charging effect in individual Si nanocrystals. Applied Physics Letters, 2001, 79(8): 1175-1177

    [4] Conibeer G, Green M A, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lind K L. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 26(511-512): 654-662

    [5] Perez-Wurfl I, Ma L, Lin D, Hao X, GreenMA, Conibeer G. Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Solar Energy Materials and Solar Cells, 2012, 100: 65-68

    [6] Uchida G, Yamamoto K, Sato M, Kawashima Y, Nakahara K, Kamataki K, Itagaki N, Koga K, Shiratani M. Effect of nitridation of Si nanoparticles on the performance of quantum-dot sensitized solar cells. Japanese Journal of Applied Physics, 2012, 51(1): 01AD01-01AD01-5

    [7] Conibeer G, Green M A, Konig D, Perez-Wurfl I, Huang S J, Hao X J, Di D W, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z Y. Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Progress in Photovoltaics: Research and Applications, 2010, 7(19): 813-824

    [8] Creazzo T, Redding B, Marchena E, Murakowski J, Prather D W. Tunable photoluminescence and electroluminescence of sizecontrolled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices. Journal of Luminescence, 2010, 130(4): 631-636

    [9] Cho E C, Park S W, Hao X J, Song D Y, Conibeer G, Park S C, Green M A. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19(24): 245201-245205

    [10] Pi X D, Zhang L, Yang D R. Enhanced the efficiency of multicrystalline silicon solar cells by the inkjet printing of siliconquantum-dot ink. Journal of Physical Chemistry C, 2012, 116(40): 21240-21243

    [11] Jiang C W, Green MA. Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. Journal of Applied Physics, 2006, 99(11): 114902-114908

    [12] Rui Y J, Li S X, Xu J, Song C, Jiang X F, Li W, Chen K J, Wang Q M, Zuo Y H. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. Journal of Applied Physics, 2011, 110(6): 064322-064327

    [13] Li S X, Rui Y J, Cao Y Q, Xu J, Chen K J. Annealing effect on optical and electronic properties of silicon rich amorphous siliconcarbide films. Front. Optoelectron, 2012, 5(1): 107-111

    [14] Tsu R, Gonzalez - Hernandez J, ChaoS S, Lee S C, TanakaK. Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si:F:H alloys. Applied Physics Letters, 1982, 40(6): 534-535

    [15] Zhou J, Chen G R, Liu Y, Xu J, Wang T, Wan N, Ma Z Y, Li W, Song C, Chen K J. Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures. Optics Express, 2009, 17(1): 156-162

    [16] Rui Y J, Li S X, Xu J, Cao Y Q, Li W, Chen K J. Comparative study of electroluminescence from annealed amorphous SiC single layer and amorphous Si/SiC multilayers. Journal of Non-Crystalline Solids, 2012, 358(17): 2114-2117

    [17] Budiman M F, Hu W, Igarashi M, Tsukamoto R, Isoda T, Itoh K M, Yamashita I, Murayama A, Okada Y, Samukawa S. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure. Nanotechnology, 2012, 23(6): 065302-065307

    [18] Chiu P W, Roth S. Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions. Applied Physics Letters, 2008, 92(4): 042107-3

    [19] Wang Q. High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells. Philosophical Magazine, 2009, 89(28): 2587-2598

    [20] Taguchi M, Maruyama E, Tanaka M. Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Japanese Journal of Applied Physics, 2008, 47(2): 814-818

    Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU, Kunji CHEN. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Frontiers of Optoelectronics, 2013, 6(2): 228
    Download Citation