• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 225 (2016)
Md. Jarez MIAH1、*, Vladimir P. KALOSHA1, Ricardo ROSALES1, and Dieter BIMBERG1、2
Author Affiliations
  • 1Institute of Solid State Physics, Technical University of Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
  • 2King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA)
  • show less
    DOI: 10.1007/s12200-016-0624-1 Cite this Article
    Md. Jarez MIAH, Vladimir P. KALOSHA, Ricardo ROSALES, Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Frontiers of Optoelectronics, 2016, 9(2): 225 Copy Citation Text show less
    References

    [1] Inoue Y, Fujikawa S. Diode-pumped Nd:YAG laser producing 122- W CW power at 1.319 μm. IEEE Journal of Quantum Electronics, 2000, 36(6): 751–756

    [2] Schulz W, Poprawe R. Manufacturing with novel high-power diode lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(4): 696–705

    [3] Brauch U, Loosen P, Opower H. High-Power Diode Lasers: Fundamentals, Technology, Applications. In: Diehl R, ed. Berlin, Germany: Springer, 2000, 303–368

    [4] Hasler K H, Sumpf B, Adamiec P, Bugge F, Fricke J, Ressel P, Wenzel H, Erbert G, Tr nkle G. 5-W DBR tapered lasers emitting at 1060 nm with a narrow spectral linewidth and a nearly diffractionlimited beam quality. IEEE Photonics Technology Letters, 2008, 20 (19): 1648–1650

    [5] Woods S. Understanding materials processing lasers. Laser- Technik-Journal, 2009, 6(5): 23–26

    [6] Lambert R W, Ayling T, Hendry A F, Carson J M, Barrow D A, McHendry S, Scott C J, McKee A, Meredith W. Facet-passivation processes for the improvement of Al-containing semiconductor laser diodes. Journal of Lightwave Technology, 2006, 24(2): 956–961

    [7] Murakami T, Ohtaki K, Matsubara H, Yamawaki T, Saito H, Isshiki K, Kokubo Y, Shima A, Kumabe H, Susaki W. A very narrow-beam AlGaAs laser with a thin tapered-thickness active layer (T3 laser). IEEE Journal of Quantum Electronics, 1987, 23(6): 712–719

    [8] Yen S T, Lee C P. A novel cladding structure for semiconductor quantum-well lasers with small beam divergence and low threshold current. IEEE Journal of Quantum Electronics, 1996, 32(9): 1588– 1595

    [9] Lin G, Yen S T, Lee C P, Liu D C. Extremely small vertical far-field angle of InGaAs-AlGaAs quantum-well lasers with specially designed cladding structure. IEEE Photonics Technology Letters, 1996, 8(12): 1588–1590

    [10] Yang G W, Xu J Y, Xu Z T, Zhang J M, Chen L H, Wang Q M. Theoretical investigation on quantum well lasers with extremely low vertical beam divergence and low threshold current. Journal of Applied Physics, 1998, 83(1): 8–14

    [11] Smowton P M, Lewis G M, Yin M, Summers H D, Berry G, Button C C. 650-nm lasers with narrow far-field divergence with integrated optical mode expansion layers. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 735–739

    [12] Bogatov A P, Gushchik T I, Drakin A E, Nekrasov A P, Popovichev V V. Optimisation of waveguide parameters of laser InGaAs/ AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power. Quantum Electronics, 2008, 38(10): 935–939

    [13] Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G, Tr nkle G. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers. Applied Physics Letters, 2010, 96(13): 131110–131110–3

    [14] Pietrzak A, Crump P, Wenzel H, Bugge F, Erbert G, Tr nkle G. High power 1060 nm ridge waveguide lasers with low-index quantum barriers for narrow divergence angle. In: Proceedings of Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science. 2010, CWE2: 1–2

    [15] Pietrzak A, Crump P, Wenzel H, Erbert G. Combination of lowindex quantum barrier and super large optical cavity designs for ultranarrow vertical far-fields from high-power broad-area lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17 (6): 1715–1722

    [16] Shchukin V, Ledentsov N, Posilovic K, Kalosha V, Kettler T, Seidlitz D,Winterfeldt M, Bimberg D, Gordeev N Y, Karachinsky L Y, Novikov I I, Shernyakov Y M, Chunareva A V, Maximov M V, Bugge F, Weyers M. Tilted wave lasers: a way to high brightness sources of light. IEEE Journal of Quantum Electronics, 2011, 47(7): 1014–1027

    [17] Kelemen M T, Weber J, Rinner F, Rogg J, Mikulla M, Weimann G. High-brightness 1040-nm tapered diode lasers. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 4947: 252–260

    [18] Kallenbach S, Kelemen M T, Aidam R, L sch R, Kaufel G, Mikulla M, Weimann G. High-power high-brightness ridge-waveguide tapered diode lasers at 14xx nm. Proceedings of the Society for Photo-Instrumentation Engineers, 2005, 5738: 406–415

    [19] Kelemen M T, Weber J, Kallenbach S, Pfahler C, Mikulla M, Weimann G. Astigmatism and beam quality of high-brightness tapered diode lasers. Proceedings of the Society for Photo- Instrumentation Engineers, 2004, 5452: 233–243

    [20] K hler B, Biesenbach J, Brand T, Haag M, Huke S, Noeske A, Seibold G, Behringer M, Luft J.High-brightness high-power kWsystem with tapered diode laser bars. Proceedings of the Society for Photo-Instrumentation Engineers, 2005, 5711: 73–84

    [21] Ledentsov N N, Shchukin V A. Novel concepts for injection lasers. Optical Engineering, 2002, 41(12): 3193–3203

    [22] Bimberg D, Posilovic K, Kalosha V, Kettler T, Seidlitz D, Shchukin V A, Ledentsov N N, Gordeev N Yu, Karachinsky L Y, Novikov I I, Maximov M V, Shernyakov Y M, Chunareva A V, Bugge F, Weyers M. High-power high-brightness semiconductor lasers based on novel waveguide concepts. Proceedings of the Society for Photo- Instrumentation Engineers, 2010, 7616: 76161I

    [23] Kalosha V P, Posilovic K, Kettler T, Shchukin V A, Ledentsov N N, Bimberg D. Simulations of the optical properties of broad-area edgeemitting semiconductor lasers at 1060 nm based on the PBC laser concept. Semiconductor Science and Technology, 2011, 26(7): 075014

    [24] Maximov M V, Shernyakov Y M, Novikov I I, Kuznetsov S M, Karachinsky L Y, Gordeev N Y, Kalosha V P, Shchukin V A, Ledentsov N N. High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence. IEEE Journal of Quantum Electronics, 2005, 41(11): 1341–1348

    [25] Novikov I I, Karachinsky L Ya, Maximov M V, Shernyakov Yu M, Kuznetsov S M, Gordeev N Yu, Shchukin V A, Kopev P S, Ledentsov N N, Ben-Ami U, Kalosha V P, Sharon A, Kettler T, Posilovic K, Bimberg D, Mikhelashvili V, Eisenstein G. Single mode cw operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal. Applied Physics Letters, 2006, 88(23): 231108

    [26] Maximov M V, Shernyakov Yu M, Novikov I I, Kuznetsov S M, Karachinsky L Y, Gordeev N Y, Soshnikov I P, Musikhin Y G, Kryzhanovskaya N V, Sharon A, Ben-Ami U, Kalosha V P, Zakharov N D, Werner P, Kettler T, Posilovic K, Shchukin V A, Ledentsov N N, Bimberg D. Longitudinal photonic bandgap crystal laser diodes with ultra-narrow vertical beam divergence. In: Proceedings of Physics & Simulation of Optoelectronic Devices XIV. 2006, 6115: 611513

    [27] Maximov M V, Shernyakov Y M, Novikov I I, Karachinsky L Y, Gordeev N Y, Ben-Ami U, Bortman-Arbiv D, Sharon A, Shchukin V A, Ledentsov N N, Kettler T, Posilovic K, Bimberg D. Highpower low-beam divergence edge-emitting semiconductor lasers with 1- and 2-D photonic bandgap crystal waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(4): 1113–1122

    [28] Posilovic K, Kettler T, Shchukin V A, Ledentsov N N, Pohl U W, Bimberg D, Fricke J, Ginolas A, Erbert G, Tr nkle G, J nsson J, Weyers M. Ultrahigh-brightness 850 nm GaAs/AlGaAs photonic crystal laser diodes. Applied Physics Letters, 2008, 93(22): 221102

    [29] Novikov I I, Gordeev N Yu, Shernyakov Y M, Kiselev Yu Yu, Maximov M V, Kopev P S, Sharon A, Duboc R, Arbiv D B, Ben- Ami U, Shchukin V A, Ledentsov N N. High-power single mode (> >1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence. Applied Physics Letters, 2008, 92(10): 103515

    [30] Kettler T, Posilovic K, Karachinsky L Y, Ressel P, Ginolas A, Fricke J, Pohl U W, Shchukin V A, Ledentsov N N, Bimberg D, J nsson J, Weyers M, Erbert G, Tr nkle G. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 901–908

    [31] Posilovic K, Kalosha V P, Winterfeldt M, Schulze J H, Quandt D, Germann T D, Strittmatter A, Bimberg D, Pohl J, Weyers M. Highpower low-divergence 1060 nm photonic crystal laser diodes based on quantum dots. Electronics Letters, 2012, 48(22): 1419–1420

    [32] Miah M J, Kettler T, Posilovic K, Kalosha V P, Skoczowsky D, Rosales R, Bimberg D, Pohl J, Weyers M. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Applied Physics Letters, 2014, 105(15): 151105

    [33] Rosales R, Kalosha V P, Posilovic K, Miah M J, Bimberg D, Pohl J, Weyers M. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime. Applied Physics Letters, 2014, 105(16): 161101

    [34] Miah M J, Kettler T, Kalosha V P, Posilovic K, Bimberg D, Pohl J, Weyers M. High temperature operation of 1060-nm high-brightness photonic band crystal lasers with very low astigmatism. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 4900206

    [35] Kalosha V P, Bimberg D. Device comprising a high brightness broad-area edge-emitting semiconductor laser and method of making the same. 2014, U.S. patent application, US20150288147

    [36] Numai T. Fundamentals of Semiconductor Lasers. In: Rhodes W T, ed. Berlin, Germany: Springer, 2004, 97–100

    [37] Agrawal G P, Dutta N K. Semiconductor Lasers. 3rd ed. Boston, MA, USA: Kluwer, 2001, 132–139

    [38] Wenzel H, Bugge F, Dallmer M, Dittmar F, Fricke J, Hasler K H, Erbert G. Fundamental-lateral mode stabilized high-power ridgewaveguide lasers with a low beam divergence. IEEE Photonics Technology Letters, 2008, 20(3): 214–216

    [39] Tai K, Yang L,Wang Y H,Wynn J D, Cho A Y. Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers. Applied Physics Letters, 1990, 56(25): 2496–2498

    [40] Wenzel H, Dallmer M, Erbert G. Thermal lensing in high-power ridge-waveguide lasers. Optical and Quantum Electronics, 2008, 40 (5): 379–384

    [41] Sellin R L, Ribbat C, Bimberg D, Rinner F, Konstanzer H, Kelemen M T, Mikulla M. High-reliability MOCVD-grown quantum dot laser. Electronics Letters, 2002, 38(16): 883–884

    [42] Kalosha V P, Posilovic K, Bimberg D. Lateral-longitudinal modes of high-power inhomogeneous waveguide Lasers. IEEE Journal of Quantum Electronics, 2012, 48(2): 123–128

    Md. Jarez MIAH, Vladimir P. KALOSHA, Ricardo ROSALES, Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Frontiers of Optoelectronics, 2016, 9(2): 225
    Download Citation