• Optics and Precision Engineering
  • Vol. 31, Issue 23, 3504 (2023)
Wenhao LI1,2, Yufei TAN1,2, Dengke ZHOU1, Yunbai QIN1,2,*, and Jiaxing YANG1
Author Affiliations
  • 1College of Electronic and Information Engineering, Guangxi Normal University, Guilin54004, China
  • 2Intelligent Robot Laboratory, Guangxi Normal University, Guilin541004, China
  • show less
    DOI: 10.37188/OPE.20233123.3504 Cite this Article
    Wenhao LI, Yufei TAN, Dengke ZHOU, Yunbai QIN, Jiaxing YANG. Transport robot integrating multi channel optical sensing and variable integral pid algorithm[J]. Optics and Precision Engineering, 2023, 31(23): 3504 Copy Citation Text show less
    References

    [1] Y ZHAO. Dynamic path planning analysis of warehouse handling robot. Journal of Sensors, 2022, 1-7(2022).

    [2] Y Z WU, D Y GE. Key technologies of warehousing robot for intelligent logistics, 13, 79-82(2019).

    [3] Z Y ZHANG, Z P ZHAO. A multiple mobile robots path planning algorithm based on A-star and dijkstra algorithm. International Journal of Smart Home, 8, 75-86(2014).

    [4] 张长勇, 王兴财, 步亚, 等. 移动机器人搬运物料目标定位优化仿真[J]. 计算机仿真, 2018, 35(2): 257-261. doi: 10.3969/j.issn.1006-9348.2018.02.054ZHANGCH Y, WANGX C, BUY, et al. Optimization of mobile robot target localization for material handling[J]. Computer Simulation, 2018, 35(2): 257-261. (in Chinese). doi: 10.3969/j.issn.1006-9348.2018.02.054

    [5] 尹姝, 周海海, 仇翔. 磁带导引AGV的自抗扰循迹控制方法[J]. 高技术通讯, 2018, 28(6): 547-552. doi: 10.3772/j.issn.1002-0470.2018.06.008YINSH, ZHOUH H, QIUX. An ADRC approach to trajectory tracking control of tape guided AGV[J]. Chinese High Technology Letters, 2018, 28(6): 547-552. (in Chinese). doi: 10.3772/j.issn.1002-0470.2018.06.008

    [6] C THEODORIDOU, D ANTONOPOULOS, A KARGAKOS et al. Robot navigation in human populated unknown environments based on visual-laser sensor fusion, 336-342(29).

    [7] Z JIA, A BALASURIYA, S CHALLA. Autonomous vehicles navigation with visual target tracking: technical approaches. Algorithms, 1, 153-182(2008).

    [8] Q FANG, X XU, X T WANG et al. Target-driven visual navigation in indoor scenes using reinforcement learning and imitation learning. CAAI Transactions on Intelligence Technology, 7, 167-176(2022).

    [9] 高婉婷, 曳永芳. 基于STM32智能小车避障系统的设计[J]. 物联网技术, 2023, 13(2):131-135.GAOW T, YEY. Design of an STM32 intelligent car obstacle avoidance system [J]. Internet of Things Technologies, 2023, 13(2):131-135.(in Chinese)

    [10] 宋海龙, 徐庆华, 丁芃, 等. 智能物流搬运机器人的设计[J]. 湖北理工学院学报, 2023, 39(2): 7-10, 53.SONGH L, XUQ H, DINGP, et al. Design of intelligent logistics conveying robot[J]. Journal of Hubei Polytechnic University, 2023, 39(2): 7-10, 53.(in Chinese)

    [11] 洪一民, 钱庆丰, 章志飞. 基于STM32的智能小车循迹避障测距的设计[J]. 物联网技术, 2022, 12(1):12-13,17.HONGY M, QIANQ F, ZHANGZH F. Design of intelligent vehicle tracking and obstacle avoidance distance measurement based on STM32 [J]. Internet of Things Technologies, 2022, 12(1):12-13,17.(in Chinese)

    [12] 程苡凡, 刘文飞, 白焕鑫. 基于STM32的寻宝旅游机器人小车设计[J]. 科技创新与应用, 2022(22):40-43.CHENGY F, LIUW F, BAIH X. Design of a treasure hunting tourism robot car based on STM32 [J]. Technology Innovation and Application, 2022(22):40-43.(in Chinese)

    [13] 杨利, 杨述, 陈柳松. 基于循迹传感器和PID算法的AGV小车行进系统[J]. 电子设计工程, 2019, 27(13): 148-152. doi: 10.3969/j.issn.1674-6236.2019.13.032YANGL, YANGSH, CHENL S. AGV travel system based on guiding-sensor and PID algorithm[J]. Electronic Design Engineering, 2019, 27(13): 148-152.(in Chinese). doi: 10.3969/j.issn.1674-6236.2019.13.032

    [14] 肖岚, 袁银麟, 翁建文, 等. 基于振镜的准直光源功率稳定控制器[J]. 光学 精密工程, 2022, 30(24): 3189-3197. doi: 10.37188/ope.20223024.3189XIAOL, YUANY L, WENGJ W, et al. Power stability controller for collimating-light source based on scanlab[J]. Opt. Precision Eng., 2022, 30(24): 3189-3197.(in Chinese). doi: 10.37188/ope.20223024.3189

    [15] 邹离江. 人形机器人的硬件系统设计[D]. 广州: 广东工业大学, 2021.ZOUL J. Hardware System Design of Humanoid Robots [D]. Guangzhou: Guangdong University of Technology,2021. (in Chinese)

    [16] 邓语馨, 陈洪芳, 张爽, 等. 智能物流的轮式循迹机器人系统设计[J]. 工具技术, 2022, 56(6):57-60. doi: 10.3969/j.issn.1000-7008.2022.06.010DENGY X, CHENH F, ZHANGSH, et al. Design of wheeled tracking robot system for intelligent logistics[J]. Tool Engineering, 2022, 56(6):57-60. (in Chinese). doi: 10.3969/j.issn.1000-7008.2022.06.010

    [17] 范淇元, 覃羡烘, 黄文妹. 基于模块化控制的多功能智能搬运小车的设计[J]. 自动化与仪表, 2018, 33(11): 47-51.FANQ Y, QINX H, HUANGW M. Design of multi-functional intelligent porter based on modular control[J]. Automation & Instrumentation, 2018, 33(11): 47-51. (in Chinese)

    [18] 黄静月, 常博学, 王日霞. 探索电子电路实验项目化: 智能寻迹小车的设计[J]. 科技与创新, 2023(10):14-16.HUANGJ Y, CHANGB X, WANGR. Exploring project-based electronic circuit experiments-Design of intelligent tracking cars [J]. Automation & Instrumentation, 2023(10):14-16.(in Chinese)

    [19] 吴辉, 司晨, 姜湖海, 等. 光电跟踪平台的观测自适应控制器[J]. 光学 精密工程, 2021, 29(6): 1311-1320. doi: 10.37188/OPE.2020.0700WUH, SICH, JIANGH H, et al. Observational adaptive controller for photoelectric tracking platform[J]. Opt. Precision Eng., 2021, 29(6): 1311-1320. (in Chinese). doi: 10.37188/OPE.2020.0700

    [20] 孙建康, 王帅, 曹斯萌, 等. 基于模糊PID控制的智能循迹小车设计[J]. 现代制造技术与装备, 2021, 57(12): 202-205. doi: 10.3969/j.issn.1673-5587.2021.12.065SUNJ K, WANGSH, CAOS M, et al. Design of intelligent tracking vehicle based on fuzzy PID control[J]. Modern Manufacturing Technology and Equipment, 2021, 57(12): 202-205. (in Chinese). doi: 10.3969/j.issn.1673-5587.2021.12.065

    [21] 王跃. 基于STM32的自平衡小车PID控制算法研究[J]. 电脑与电信, 2022(9): 63-68. doi: 10.3969/j.issn.1008-6609.2022.9.gddnydx202209015WANGY. Research on PID control algorithm for self-balancing vehicle based on STM32[J]. Computer & Telecommunication, 2022(9): 63-68.(in Chinese). doi: 10.3969/j.issn.1008-6609.2022.9.gddnydx202209015

    Wenhao LI, Yufei TAN, Dengke ZHOU, Yunbai QIN, Jiaxing YANG. Transport robot integrating multi channel optical sensing and variable integral pid algorithm[J]. Optics and Precision Engineering, 2023, 31(23): 3504
    Download Citation