• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 1, 010605 (2024)
Shizhuan XU1,2, Jian CHEN1,3, Jinzhao ZOU1,2, Peng WANG1,**..., Changqing CAO1 and Jun LIN1,2,*|Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Guangxi Normal University, Guilin 541004, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.010605 Cite this Article
    Shizhuan XU, Jian CHEN, Jinzhao ZOU, Peng WANG, Changqing CAO, Jun LIN. Quantitative determination of UF3 in LiF-BeF2 molten salt system based on XRD internal standard method[J]. NUCLEAR TECHNIQUES, 2024, 47(1): 010605 Copy Citation Text show less
    References

    [1] Yang X, Guo L H, Zhang F et al. Microstructure and mechanical properties evolution of thermal-treated SiC layer with fine grain size in TRISO particles[J]. Materials Science and Engineering: B, 287, 116096(2023).

    [2] Guo L H, Zhang F, Lu L Y et al. Preparation of the highly dense ceramic-metal fuel particle with fine-grained tungsten layer by chemical vapor deposition for the application in nuclear thermal propulsion[J]. Tungsten, 4, 1-9(2022).

    [3] Yang X, Zhang F, Guo M S et al. Preparation of SiC layer with sub-micro grain structure in TRISO particles by spouted bed CVD[J]. Journal of the European Ceramic Society, 39, 2839-2845(2019).

    [4] Merle-Lucotte E, Heuer D, Allibert M et al. Introduction to the physics of molten salt reactors[C], 501-521(2008).

    [5] Serp J, Allibert M, Beneš O et al. The molten salt reactor (MSR) in generation IV: overview and perspectives[J]. Progress in Nuclear Energy, 77, 308-319(2014).

    [6] YU Kaicheng, CHENG Maosong, DAI Zhimin. Development and verification of fuel management code for liquid-fueled molten salt reactor based on deterministic code system[J]. Nuclear Techniques, 44, 040603(2021).

    [7] SUN Guomin, CHENG Maosong, DAI Zhimin. Preliminary analysis of fuel management for a small modular molten salt fast reactor[J]. Nuclear Techniques, 39, 070603(2016).

    [8] JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program - TMSR nuclear energy system[J]. Bulletin of the Chinese Academy of Sciences, 27, 366-374(2012).

    [9] WANG Peng, ZHENG Haiyang, SHE Changfeng et al. Electro-deposition method for uranium trifluoride[P].

    [10] WANG Peng, SUN Lixin, CAO Changqing et al. Method for reconstructing molten salt reactor fuel[P].

    [11] Briggs R B. Molten-salt reactor program semianual progress report for period ending (ORNL-3626)[R](1964).

    [12] Rosenthal M W, Briggs R B, Kasten P R. Molten-salt reactor program semianual progress report for period ending (ORNL-4119)[R](1967).

    [13] Rosenthal M W, Briggs R B, Kasten P R. Molten-salt reactor program semianual progress report for period ending (ORNL-4396)[R](1969).

    [14] Briggs R B. Molten-salt reactor program semianual progress report for period ending (ORNL-3872)[R](1965).

    [15] Briggs R B. Molten-salt reactor program semianual progress report for period ending(ORNL-4037)[R](1967).

    [16] Rosentha M W, Briggs R B. Kasten P R Molten-salt reactor program semianual progress report for period ending (ORNL-4344)[R](1969).

    [17] Rosenthal M W, Briggs R B, Kasten P R. Molten-salt reactor program semianual progress report for period ending(ORNL-4191)[R](1967).

    [18] Kelley M T, Susano C D, Fisher D J. Analytical chemistry division annual progress report for period ending (ORNL-3750)[R](1965).

    [19] Young J P, Mamantov G, Whiting F L. Simultaneous voltammetric generation of uranium(III) and spectrophotometric observation of the uranium(III)-uranium(IV) system in molten lithium fluoride-beryllum fluoride-zirconium fluoride[J]. The Journal of Physical Chemistry, 71, 782-783(1967).

    [20] Peng H, Shen M, Zuo Y et al. Electrochemical technique for detecting the formation of uranium-containing precipitates in molten fluorides[J]. Electrochimica Acta, 222, 1528-1537(2016).

    [21] Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 7, 526-531(1974).

    [22] Hillier S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation[J]. Clay Minerals, 35, 291-302(2000).

    [23] Huang Q Y, Wang C J, Shan Q A. Quantitative deviation of nanocrystals using the RIR method in X-ray diffraction (XRD)[J]. Nanomaterials, 12, 2320(2022).

    [24] Post J E, Bish D L. Rietveld refinement of crystal structures using powder X-ray diffraction data[J]. Reviews in Mineralogy and Geochemistry, 20, 277-308(1989).

    [25] Hadjadj K, Chihi S. Rietveld refinement based quantitative phase analysis (QPA) of Ouargla (part of grand erg oriental in Algeria) dunes sand[J]. Silicon, 14, 429-437(2022).

    [26] Goehner R P. X-ray diffraction quantitative analysis using intensity ratios and external standards[J]. Advances in X-Ray Analysis, 25, 309-313(1981).

    [27] Spieß L, Teichert G, Schwarzer R et al[M]. Moderne Röntgenbeugung: Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker(2019).

    [28] Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 7, 519-525(1974).

    [29] HUANG Jiwu, LI Zhou[M]. X-ray diffraction of polycrystalline materials: experimental principle, method and application(2012).

    [30] Aranda M A G, De la Torre A G, Leon-Reina L. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products[J]. Reviews in Mineralogy and Geochemistry, 74, 169-209(2012).

    [31] De la Torre A G, Aranda M A G. Accuracy in Rietveld quantitative phase analysis of Portland cements[J]. Journal of Applied Crystallography, 36, 1169-1176(2003).

    [32] Le Saout G, Füllmann T, Kocaba V et al. Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard[C](2007).

    [33] Madsen I C, Scarlett N V Y, Cranswick L M D et al. Outcomes of the international union of crystallography commission on powder diffraction round robin on quantitative phase analysis: samples 1a to 1h[J]. Journal of Applied Crystallography, 34, 409-426(2001).

    [34] Brime C. The accuracy of X-ray diffraction methods for determining mineral mixtures[J]. Mineralogical Magazine, 49, 531-538(1985).

    [35] Alexander L, Klug H P. Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures[J]. Analytical Chemistry, 20, 886-889(1948).

    [36] Zhao P Q, Liu X P, De La Torre A G et al. Assessment of the quantitative accuracy of Rietveld/XRD analysis of crystalline and amorphous phases in fly ash[J]. Analytical Methods, 9, 2415-2424(2017).

    [37] Shaffer J. Preparation and handling of salt mixtures for the molten salt reactor experiment[R](1971).

    [38] Cordfunke E H P, Ouweltjes W. Standard enthalpies of formation of uranium compounds VII. UF3 and UF4 (by solution calorimetry)[J]. The Journal of Chemical Thermodynamics, 13, 193-197(1981).

    [39] Cousson A, Pages M, Cousseins J C et al. Flux growth of flourides of lithium and thorium or uranium[J]. Journal of Crystal Growth, 40, 157-160(1977).

    [40] Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control[J]. Electrochimica Acta, 160, 209-213(2015).

    [41] Walenta G, Füllmann T. Advances in quantitative XRD analysis for clinker, cements, and cementitious additions[J]. Powder Diffraction, 19, 40-44(2004).

    [42] Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: how random are powder samples?[J]. Clays and Clay Minerals, 56, 404-415(2008).

    [43] MA Lidun. Calibration of X-ray powder diffraction data[J]. Shanghai Measurement and Testing, 33, 10-16(2006).

    [44] MA Lidun[M]. Modern X-ray polycrystalline diffraction: experimental techniques and data analysis(2004).

    [45] QIAO Zhu, ZHENG Jianming, SONG Jianfeng et al. Quantitative determination of Fe3O4, Fe2O3 and SiO2 in iron ore by Si internal standard-X-ray diffraction method[J]. Chinese Journal of Inorganic Analytical Chemistry, 13, 463-468(2023).

    [46] Brindley G W. XLV. The effect of grain or particle Size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36, 347-369(1945).

    Shizhuan XU, Jian CHEN, Jinzhao ZOU, Peng WANG, Changqing CAO, Jun LIN. Quantitative determination of UF3 in LiF-BeF2 molten salt system based on XRD internal standard method[J]. NUCLEAR TECHNIQUES, 2024, 47(1): 010605
    Download Citation