• Nano-Micro Letters
  • Vol. 16, Issue 1, 005 (2024)
Kangwang Wang1, Zhuofeng Hu2, Peifeng Yu1, Alina M. Balu3..., Kuan Li1, Longfu Li1, Lingyong Zeng1, Chao Zhang1, Rafael Luque4,5, Kai Yan2,* and Huixia Luo1,**|Show fewer author(s)
Author Affiliations
  • 1School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, People’s Republic of China
  • 2School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, People’s Republic of China
  • 3Departamento de Química Orgánica, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie (C3), 14014 Córdoba, Spain
  • 4Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
  • 5Universidad ECOTEC, Km 13.5 Samborondón, EC092302 Samborondón, Ecuador
  • show less
    DOI: 10.1007/s40820-023-01221-3 Cite this Article
    Kangwang Wang, Zhuofeng Hu, Peifeng Yu, Alina M. Balu, Kuan Li, Longfu Li, Lingyong Zeng, Chao Zhang, Rafael Luque, Kai Yan, Huixia Luo. Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction[J]. Nano-Micro Letters, 2024, 16(1): 005 Copy Citation Text show less
    References

    [1] G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8, 1802427 (2018).

    [2] C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14, 167 (2022).

    [3] J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021).

    [4] S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59, 10651–10657 (2020).

    [5] K. Li, Y. Cai, X. Yang, S. Wang, C. Teng et al., H2S involved photocatalytic system: a novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant. Adv. Funct. Mater. 32, 2113002 (2022).

    [6] R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu et al., 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, e202218016 (2023).

    [7] H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa et al., Double resonance Raman modes in monolayer and few-layer MoTe2. Phys. Rev. B 91, 205415 (2015).

    [8] K.A.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    [9] Y. Feng, C. Wang, P. Cui, C. Li, B. Zhang et al., Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2. Adv. Mater. 34, 2109074 (2022).

    [10] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    [11] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    [12] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    [13] V. Wang, N. Xu, J. Liu, G. Tang, W. Geng, Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun. 267, 108033 (2021).

    [14] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (Dft-D) for the 94 elements H-Pu. J. chem. phys. 132, 154104 (2010).

    [15] Z. Wang, J. Zhu, X. Zu, Y. Wu, S. Shang et al., Selective CO2 photoreduction to CH4 via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angew. Chem. Int. Ed. 61, e202203249 (2022).

    [16] NIST-JANAF Thermochemical Tables. https://janaf.nist.gov/

    [17] Y.N. Bo, H.Y. Wang, Y.X. Lin, T. Yang, R. Ye et al., Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew. Chem. Int. Ed. 60, 16085 (2021).

    [18] Q. Li, C. Fang, Z. Yang, B. Yu, M. Takabatake et al., Modulating the oxidation state of titanium via dual anions substitution for efficient N2 electroreduction. Small 18, 2201343 (2022).

    [19] O.E. Dagdeviren, D. Glass, R. Sapienza, E. Cortés, S.A. Maier et al., The effect of photoinduced surface oxygen vacancies on the charge carrier dynamics in TiO2 films. Nano Lett. 21, 8348–8354 (2021).

    [20] A.S. Al-Fatesh, Y. Arafat, S.O. Kasim, A.A. Ibrahim, A.E. Abasaeed et al., In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B Environ. 280, 119445 (2021).

    [21] Y. Liu, Y. Zheng, W. Zhang, Z. Peng, H. Xie et al., Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. J. Mater. Sci. Technol. 95, 127–135 (2021).

    [22] X. Yao, X. Hu, W. Zhang, X. Gong, X. Wang et al., Mie resonance in hollow nanoshells of ternary TiO2-Au-CdS and enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 276, 119153 (2020).

    [23] H. Cheng, Q. Liu, Y. Diao, L. Wei, J. Chen et al., CoMo2S4 with superior conductivity for electrocatalytic hydrogen evolution: elucidating the key role of co. Adv. Funct. Mater. 9, 2103732 (2021).

    [24] S. Gong, Y. Niu, X. Liu, C. Xu, C. Chen et al., Selective CO2 photoreduction to acetate at asymmetric ternary bridging sites. ACS Nano 17, 4922–4932 (2023).

    [25] C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng et al., Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    [26] W. Liu, P. Fu, Y. Zhang, H. Xu, H. Wang et al., Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. PNAS 120, e2218813120 (2023).

    [27] K.K. Halankar, B.P. Mandal, A.K. Tyagi, Superior electrochemical performance of MoS2 decorated on functionalized carbon nanotubes as anode material for sodium ion battery. Carbon Trends 5, 100103 (2021).

    [28] X. Guo, E. Song, W. Zhao, S. Xu, W. Zhao et al., Charge self-regulation in 1T’’’-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity. Nat. Commun. 13, 5954 (2022).

    [29] J.C. McGlynn, T. Dankwort, L. Kienle, N.A.G. Bandeira, J.P. Fraser et al., The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 10, 4916 (2019).

    [30] D. Lee, Y. Lee, Beneficial effect of V on stability of dispersed MoS2 catalysts in slurry phase hydrocracking of vacuum residue: XAFS studies. J. Catal. 413, 443–454 (2022).

    [31] J.Y. Zhang, J. Liang, B. Mei, K. Lan, L. Zu et al., Synthesis of Ni/NiO@MoO3−x composite nanoarrays for high current density hydrogen evolution reaction. Adv. Energy Mater. 12, 2200001 (2022).

    [32] M. Krbal, V. Prokop, A.A. Kononov, J.R. Pereira, J. Mistrik et al., Amorphous-to-crystal transition in quasi-two-dimensional MoS2: implications for 2D electronic devices. ACS Appl. Nano Mater. 4, 8834–8844 (2021).

    [33] X. Zhao, X. Li, Z. Zhu, W. Hu, H. Zhang et al., Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen. Appl. Catal. B Environ. 300, 120759 (2022).

    [34] M. Cao, L. Ni, Z. Wang, J. Liu, Y. Tian et al., DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Appl. Surf. Sci. 551, 149364 (2021).

    [35] M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li et al., Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Mater. 32, 2111740 (2022).

    [36] M. Humayun, N. Sun, F. Raziq, X. Zhang, R. Yan et al., Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B Environ. 231, 23–33 (2018).

    [37] Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei et al., Designing covalent organic frameworks with Co–O4 atomic sites for efficient CO2 photoreduction. Nat. Commun. 14, 1147 (2023).

    [38] L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao et al., Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 144, 17097–17109 (2022).

    [39] X. Chen, C. Peng, W. Dan, L. Yu, Y. Wu et al., Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nat. Commun. 13, 4592 (2022).

    [40] S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2022).

    [41] Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8, 504–514 (2023).

    [42] J. Sheng, Y. He, J. Li, C. Yuan, H. Huang et al., Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO Photoreduction. ACS Nano 14, 13103–13114 (2020).

    [43] H. Li, C. Cheng, Z. Yang, J. Wei, Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat. Commun. 13, 6466 (2022).

    [44] J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang et al., Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 13, 4681 (2022).

    [45] C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022).

    [46] L. Ju, X. Tan, X. Mao, Y. Gu, S. Smith et al., Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 12, 5128 (2021).

    [47] Q. Cheng, M. Huang, L. Xiao, S. Mou, X. Zhao et al., Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 13, 4021–4029 (2023).

    [48] D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu et al., Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 34, 2108475 (2022).

    [49] C. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao et al., A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 32, 2001267 (2020).

    Kangwang Wang, Zhuofeng Hu, Peifeng Yu, Alina M. Balu, Kuan Li, Longfu Li, Lingyong Zeng, Chao Zhang, Rafael Luque, Kai Yan, Huixia Luo. Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction[J]. Nano-Micro Letters, 2024, 16(1): 005
    Download Citation