• Chinese Journal of Lasers
  • Vol. 50, Issue 19, 1905002 (2023)
Xueqiang Li1、2, Fang Wu1、2, Shuang Gong1、2, and Yang Bu1、2、*
Author Affiliations
  • 1Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL221537 Cite this Article Set citation alerts
    Xueqiang Li, Fang Wu, Shuang Gong, Yang Bu. Complex Coherence Modulation of Laser Field Based on Random Microlens Array[J]. Chinese Journal of Lasers, 2023, 50(19): 1905002 Copy Citation Text show less
    Thiessen polygons and random microlens arrays based on Thiessen polygonal arrangements. (a) Thiessen polygons; (b) random microlens array
    Fig. 1. Thiessen polygons and random microlens arrays based on Thiessen polygonal arrangements. (a) Thiessen polygons; (b) random microlens array
    Structure diagram of random microlens array. (a) Three-dimensional diagram; (b) surface height fluctuation; (c) two-dimensional diagram
    Fig. 2. Structure diagram of random microlens array. (a) Three-dimensional diagram; (b) surface height fluctuation; (c) two-dimensional diagram
    Simulation diagram. (a) Optics structure; (b) initial beam divergence angle; (c) beam divergence angle after random microlens array
    Fig. 3. Simulation diagram. (a) Optics structure; (b) initial beam divergence angle; (c) beam divergence angle after random microlens array
    Microlens unit structure
    Fig. 4. Microlens unit structure
    Divergence angle for different microlens element parameters
    Fig. 5. Divergence angle for different microlens element parameters
    Young's interferometry with double holes
    Fig. 6. Young's interferometry with double holes
    Interference fringes and fringe intensity distribution. (a) Without random microlens array; (b) through static random microlens array; (c) through rotating random microlens array (60 r/min)
    Fig. 7. Interference fringes and fringe intensity distribution. (a) Without random microlens array; (b) through static random microlens array; (c) through rotating random microlens array (60 r/min)
    Interference fringe patterns at different rotation speeds. (a) 300 r/min; (b) 600 r/min; (c) 1200 r/min; (d) 2400 r/min
    Fig. 8. Interference fringe patterns at different rotation speeds. (a) 300 r/min; (b) 600 r/min; (c) 1200 r/min; (d) 2400 r/min
    Schematic of experimental setup
    Fig. 9. Schematic of experimental setup
    Surface profile of random microlens array. (a) Observation by microscope; (b) observation by interferometer
    Fig. 10. Surface profile of random microlens array. (a) Observation by microscope; (b) observation by interferometer
    Diagram of divergence angle measurement
    Fig. 11. Diagram of divergence angle measurement
    Experimental interference fringe patterns. (a) Without random microlens array; (b) through static random microlens array; (c) through rotating random microlens array (60 r/min)
    Fig. 12. Experimental interference fringe patterns. (a) Without random microlens array; (b) through static random microlens array; (c) through rotating random microlens array (60 r/min)
    Experimental interference fringe patterns at different rotation speeds. (a) 300 r/min; (b) 600 r/min; (c) 1200 r/min; (d) 2400 r/min
    Fig. 13. Experimental interference fringe patterns at different rotation speeds. (a) 300 r/min; (b) 600 r/min; (c) 1200 r/min; (d) 2400 r/min
    Image of double-hole light spots
    Fig. 14. Image of double-hole light spots
    Modulus of complex coherence varies with rotation speed
    Fig. 15. Modulus of complex coherence varies with rotation speed
    Speed /(r·min-1Light intensityratioFringecontrast VModulus of complexcoherence γ12
    00.86470.91390.9164
    600.95610.35250.3526
    3000.95440.19920.1993
    6000.95260.11080.1108
    12000.95340.07250.0725
    24000.95410.05280.0528
    36000.95230.03980.0398
    48000.95220.03050.0305
    Table 1. Double-hole light intensity ratio and modulus of complex coherence at different rotation speeds
    Speed range /(r·min-1Reduction percentage of complexcoherence with every 60 r/min speed increase /%
    0‒6061.52
    60‒30010.87
    300‒6008.88
    600‒12003.46
    1200‒24001.36
    2400‒36001.23
    3600‒48001.17
    Table 2. Percentage decrease of modulus of complex coherence with every 60 r/min increase in different speed ranges
    Xueqiang Li, Fang Wu, Shuang Gong, Yang Bu. Complex Coherence Modulation of Laser Field Based on Random Microlens Array[J]. Chinese Journal of Lasers, 2023, 50(19): 1905002
    Download Citation