• Frontiers of Optoelectronics
  • Vol. 6, Issue 4, 373 (2013)
Kun CAO and Mingkui WANG*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-013-0347-5 Cite this Article
    Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Frontiers of Optoelectronics, 2013, 6(4): 373 Copy Citation Text show less
    References

    [1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

    [2] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395: 583-585

    [3] Han L Y, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S F, Yang X D, Yanagida M. High-efficiency -sensitized solar cell with a novel co-adsorbent. Energy & Environmental Sciences, 2012, 5(3): 6057-6060

    [4] Kohle O, Gratzel M, Meyer A F, Meyer T B. The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)-bis-2, 2′bipyridine-4, 4′-dicarboxylic acid and related sensitizers. Advanced Materials, 1997, 9(11): 904-906

    [5] Wang P, Zakeeruddin S M, Moser J E, Nazeeruddin MK, Sekiguchi T, Gratzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2: 402-407

    [6] Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Gratzel M. A high molar extinction coefficient sensitizer for stable dyesensitized solar cells. Journal of the American Chemical Society, 2005, 127(3): 808-809

    [7] Kuang D, Klein C, Ito S, Moser J E, Humphrey-Baker R, Evans N, Duriaux F, Gratzel C, Zakeeruddin S M, Gratzel M. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Advanced Materials, 2007, 19(8): 1133-1137

    [8] Gao F F,Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Humphry-Baker R,Wang P, Zakeeruddin S M, Gratzel M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society, 2008, 130(32): 10720-10728

    [9] Chen C Y, Wu S J, Wu C G, Chen J G, Ho K C. A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angewandte Chemie International Edition, 2006, 45(35): 5822-5825

    [10] Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano, 2009, 3(10): 3103-3109

    [11] Cao Y M, Bai Y, Yu Q J, Cheng Y M, Liu S, Shi D, Gao F F, Wang P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. Journal of Physical Chemistry C, 2009, 113(15): 6290-6297

    [12] Karthikeyan C S, Peter K, Wietasch H, Thelakkat M. Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Solar Energy Materials and Solar Cells, 2007, 91(5): 432-439

    [13] Yum J H, Jung I, Baik C, Ko J J, NazeeruddinMK, Gratzel M. High efficient donor-acceptor ruthenium complex for dye -sensitized solar cell applications. Energy & Environmental Sciences, 2009, 2(1): 100-102

    [14] Yum J H, Moon S J, Karthikeyan C S, Wietasch H, Thelakkat M, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Heteroleptic ruthenium complex containing substituted triphenylamine holetransport unit as sensitizer for stable dye-sensitized solar cell. Nano Energy, 2012, 1(1): 6-12

    [15] Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Gratzel M. New paradigm in molecular engineering of sensitizers for solar cell applications. Journal of the American Chemical Society, 2009, 131(16): 5930-5934

    [16] Wang S W,Wu K L, Ghadiri E, LobelloMG, Ho S T, Chi Y, Moser J E, Angelis F D, Gratzel M, Nazeeruddin M K. Engineering of thiocyanate-free Ru(II) sensitizers for high efficiency dye-sensitized solar cells. Chemical Science, 2013, 4(6): 2423-2433

    [17] Yeh H H, Ho S T, Chi Y, Clifford J N, Palomares E, Liun S H, Chou P T. Ru(II) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1: 7681-7689

    [18] Bessho T, Zakeeruddin S M, Yeh C Y, Diau E W G, Gratzel M. Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angewandte Chemie International Edition, 2010, 49(37): 6646-6649

    [19] Wang C L, Chang Y C, Lan C M, Lo C F, Diau E W G, Lin C Y. Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy & Environmental Sciences, 2011, 4(5): 1788-1795

    [20] Wang C L, Lan C M, Hong S H, Wang Y F, Pan T Y, Chang C W, Kuo H H, Kuo M Y, Diau E W G, Lin C Y. Enveloping porphyrins for efficient dye-sensitized solar cells. Energy & Environmental Sciences, 2012, 5(5): 6933-6940

    [21] Chang Y C,Wang C L, Pan T Y, Hong S H, Lan C M, Kuo H H, Lo C F, Hsu H Y, Lin C Y, Diau E W G. A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical Communications (Cambridge), 2011, 47(31): 8910-8912

    [22] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gratzel M. Porphyrinsensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629-634

    [23] He J X, Guo F L, Li X,WuWJ, Yang J B, Hua J L. New bithiazolebased sensitizers for efficient and stable dye-sensitized solar cells. Chemistry, a European Journal (Weinheim an der Bergstrasse, Germany), 2012, 18(25): 7903-7915

    [24] ZengWD, Cao Y M, Bai Y,Wang Y H, Shi Y S, Zhang M,Wang F F, Pan C Y, Wang P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chemistry of Materials, 2010, 22(5): 1915-1925

    [25] Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum J H, Ko J, Nazeeruddin M K, Gratzel M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chemistry, a European Journal (Weinheim an der Bergstrasse, Germany), 2010, 16(4): 1193-1201

    [26] Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M. High-conversion-efficiency organic dyesensitized solar cells with a novel indoline dye. Chemical Communications (Cambridge), 2008, 41: 5194-5196

    [27] Wu Y Z, Marszalek M, Zakeeruddin S M, Zhang Q, Tian H, Gratzel M, Zhu W. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D-A-π-A featured organic indoline dyes. Energy & Environmental Sciences, 2012, 5(8): 8261-8272

    [28] Zhang M, Liu J G, Wang Y H, Zhou D F, Wang P. Redox couple related influences of π-conjugation extension in organic dyesensitized mesoscopic solar cells. Chemical Science, 2011, 2(7): 1401-1406

    [29] Cao Y M, Cai N, Wang Y L, Li R Z, Yuan Y, Wang P. Modulating the assembly of organic dye molecules on titania nanocrystals via alkyl chain elongation for efficient mesoscopic cobalt solar cells. Physical Chemistry Chemical Physics, 2012, 14(23): 8282-8286

    [30] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591

    [31] Li J Y, Chen C Y, Chen J G, Tan C J, Lee K M, Wu S J, Tung Y L, Tsai H H, Ho K C,Wu C G. Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20(34): 7158-7164

    [32] Chen C Y,Wu S J, Li J Y,Wu C G, Chen J G, Ho K C. A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Advanced Materials, 2007, 19(22): 3888-3891

    [33] Chen C Y, Pootrakulchote N, Wu S J, Wang M K, Li J Y, Tsai J H, Wu C G, Zakeeruddin S M, Gratzel M. New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dyesensitized solar cells. Journal of Physical Chemistry C, 2009, 113(48): 20752-20757

    [34] Zhu S S, Kingsborough R P, Swager T M. Conducting redox polymers: investigations of polythiophene-Ru(bpy)3n+ hybrid materials. Journal of Materials Chemistry, 1999, 9(9): 2123-2131

    [35] Nazeeruddin M K, Baranoff E, Gratzel M. Dye-sensitized solar cells: a brief overview. Solar Energy, 2011, 85(6): 1172-1178

    [36] Wadman S H, Kroon J M, Bakker K, Lutz M, Spek A L, Klin G P M, Koten G. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications (Cambridge), 2007, 19(19): 1907-1909

    [37] Wu K L, Ku W P, Wang S W, Yella A, Chi Y, Liu S H, Chou P T, Nazeeruddin M K, Gratzel M. Thiocyanate-free Ru(II) sensitizers with a 4,4′-dicarboxyvinyl-2,2′-bipyridine anchor for dye-sensitized solar cells. Advanced Functional Materials, 2013, 23(18): 2285-2294

    [38] Wu K L, Ku W P, Clifford J N, Palomares E, Ho S T, Chi Y, Liu S H, Chou P T, Nazeeruddin M K, Gratzel M. Harnessing the opencircuit voltage via a new series of Ru(II) sensitizers bearing (iso-) quinolinyl pyrazolate ancillarie. Energy & Environmental Sciences, 2013, 6: 859-870

    [39] Bomben P G, Robson K C D, Koivisto B D, Berlinguette C P. Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews, 2012, 256(15-16): 1438-1450

    [40] Hsu C W, Ho S T, Wu K L, Chi Y, Liu S H, Chou P T.Ru(II) sensitizers with a tridentate heterocyclic cyclometalate for dyesensitized solar cells. Energy& Environmental Sciences, 2012, 5(6): 7549-7554

    [41] Wu K L, Li C H, Chi Y, Clifford J N, Cabau L, Palomares E, Cheng Y M, Pan H A, Chou P T. Dye molecular structure device opencircuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(17): 7488-7496

    [42] Imahori H, Umeyama T, Ito S. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1809-1818

    [43] Panda M K, Ladomenou K, Coutsolelos A G. Porphyrins in bioinspired transformations: light-harvesting to solar cell. Coordination Chemistry Reviews, 2012, 256(21-22): 2601-2627

    [44] CampbellWM, Burrell A K, Officer D L, Jolley K W. Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews, 2004, 248(13-14): 1363-1379

    [45] He H, Gurung A, Si L P. 8-hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chemical Communications (Cambridge), 2012, 48(47): 5910-5912

    [46] Lammi R K, Wagner R W, Ambroise A, Diers J R, Bocian D F, Holten D, Lindsey J S. Mechanisms of excited-state energy-transfer gating in linear versus branched multiporphyrin arrays. Journal of Physical Chemistry B, 2001, 105(22): 5341-5352

    [47] Lee C W, Lu H P, Lan C M, Huang Y L, Liang Y R, YenWN, Liu Y C, Lin Y S, Diau E W G, Yeh C Y. Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chemistry, a European Journal (Weinheim an der Bergstrasse, Germany), 2009, 15(6): 1403-1412

    [48] Lu H P, Tsai C Y, Yen W N, Hsieh C P, Lee C W, Yeh C Y, Diau E W G. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate. Journal of Physical Chemistry C, 2009, 113(49): 20990-20997

    [49] Li L L, Diau E W G. Porphyrin-sensitized solar cells. Chemical Society Reviews, 2013, 42(1): 291-304

    [50] Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H. Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells. Chemical Communications (Cambridge), 2007, 20: 2069-2071

    [51] Liu Y Z, Lin H, Dy J T, Tamaki K, Nakazaki J, Nakayama D, Uchida S, Kubo T, Segawa H. N-fused carbazole-zinc porphyrin-free-base porphyrin triad for efficient near-IR dye-sensitized solar cells. Chemical Communications (Cambridge), 2011, 47(13): 4010-4012

    [52] Mai C L, HuangWK, Lu H P, Lee C W, Chiu C L, Liang Y R, Diau E W G, Yeh C Y. Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chemical Communications (Cambridge), 2010, 46(5): 809-811

    [53] Mozer A J, Wagner P, Officer D L, Wallace G G, Campbell W M, Miyashita M, Sunahara K, Mori S. The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications (Cambridge), 2008, 39: 4741-4743

    [54] Tsao H N, Yi C Y, Moehl T, Yum J H, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. ChemSusChem, 2011, 4(5): 591-594

    [55] Lu J F, Xu X B, Li Z H, Cao K, Cui J, Zhang Y B, Shen Y, Li Y, Zhu J, Dai S Y, Chen W, Cheng Y B,Wang MK. Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells. Chemistry, an Asian Journal, 2013, 8(5): 956-962

    [56] Mishra A, Fischer M K R, Bruerle P. Metallfreie organische farbstoffe für farbstoffsensibilisierte solarzellen-von struktureigenschafts-beziehungen zu designregeln. Angewandte Chemie, 2009, 121(14): 2510-2536

    [57] Wang X F, Tamiaki H. based molecules for Cyclic tetrapyrroledyesensitized solar cells. Energy& Environmental Sciences, 2010, 3(1): 94-106

    [58] Ning Z J, Fu Y, Tian H. Improvement of dye -sensitized solar cells : what we know and what we need to know. Energy & Environmental Sciences, 2010, 3(9): 1170-1181

    [59] Fang Z, Eshbaugh A A, Schanze K S. Low-bandgap donor-acceptor conjugated polymer sensitizers for dye-sensitized solar cells. Journal of the American Chemical Society, 2011, 133(9): 3063-3069

    [60] He J X, Wu W J, Hua J L, Jiang Y H, Qu S Y, Li J, Long Y T, Tian H. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. Journal of Materials Chemistry, 2011, 21(16): 6054-6062

    [61] Xu W, Peng B, Chen J, Liang M, Cai F S. New triphenylaminebased dyes for dye-sensitized solar cells. Journal of Physical Chemistry C, 2008, 112(3): 874-880

    [62] Zhang G L, Bai Y, Li R Z, Shi D, Wenger S, Zakeeruddin S M, Gratzel M,Wang P. Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy & Environmental Sciences, 2009, 2(1): 92-95

    [63] Liu J Y, Zhou D F, Xu M F, Jing X Y, Wang P. The structure-property relationship of organic dyes in mesoscopic titania solar cells : only one double-bond difference. Energy & Environmental Sciences, 2011, 4(9): 3545-3551

    [64] Zhu X Z, Tsuji H, Yella A, Chauvin A S, Gratzel M, Nakamura E. New sensitizers for dye-sensitized solar cells featuring a carbonbridged phenylenevinylene. Chemical Communications (Cambridge), 2013, 49(6): 582-584

    [65] Choi H, Baik C, Kang S O, Ko J, Kang M S, Nazeeruddin M K, Gratzel M. Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angewandte Chemie International Edition, 2008, 47(2): 327-330

    [66] Lim K, Kim C, Song J, Yu T, Lim W, Song K, Wang P, Zu N, Ko J. Enhancing the performance of organic dye-sensitized solar cells via a slight structure modification. Journal of Physical Chemistry C, 2011, 115(45): 22640-22646

    [67] Kim S, Lee J K, Kang S O, Ko J, Yum J H, Frantacci S, Angelis F D, Censo D D, Nazeeruddin MK, Gratzel M. Molecular engineering of organic sensitizers for solar cell applications. Journal of the American Chemical Society, 2006, 128(51): 16701-16707

    [68] ZhuWH,Wu Y Z,Wang S T, LiWQ, Li X, Chen J,Wang Z S, Tian H. Organic D-A-π-A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials, 2011, 21(4): 756-763

    [69] Wu Y Z, Zhang X, Li W Q, Wang Z S, Tian H, Zhu W H. Hexylthiophene-featured D-A-π-A structural indoline chromophores for coadsorbent-free and panchromatic dye-sensitized solar cells. Advanced Energy Materials, 2012, 2(1): 149-156

    [70] Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013, 42(8): 3453-3488

    [71] Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1819-1826

    [72] O’Regan B C, Lopez-Duarte I, Martínez-Díaz M V, Forneli A, Albero J, Morandeira A, Palomares E, Torres T, Durrant J R. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. Journal of the American Chemical Society, 2008, 130(10): 2906-2907

    [73] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995, 95(1): 49-68

    [74] Mitzi D B. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorganic Chemistry, 2000, 39(26): 6107-6113

    [75] Gratzel C, Zakeeruddin S M. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. Materials Today, 2013, 6(1-2): 11-18

    [76] Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. Journal of Chemical Physics, 1987, 87(11): 6373-6378

    [77] Mitzi D B, Field C A, Schlesinger Z, Laibowitz R B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. Journal of Solid State Chemistry, 1995, 114(1): 159-163

    [78] Yamada K, Kuranaga Y, Ueda K, Goto S, Okuda T, Furukawa Y. Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bulletin of the Chemical Society of Japan, 1998, 71(1): 127-134

    [79] Mitzi D B, Feild C A, Harrison W T A, Guloy A M. Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994, 369(6480): 467-469

    [80] Billing D G, Llemmerer A. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006, 8(9): 686-695

    [81] Zhang S J, Lanty G, Lauret J S, Deleporte E, Audebert P, Galmiche L. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors. Acta Materialia, 2009, 57(11): 3301-3309

    [82] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051

    [83] Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088-4093

    [84] Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. All-solidstate dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486-489

    [85] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647

    [86] Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396-17399

    Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Frontiers of Optoelectronics, 2013, 6(4): 373
    Download Citation