[1] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J].Journal of Photochemistry & Photobiology C Photochemistry Reviews,2000,1(1):1-21.
Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J].Journal of Photochemistry & Photobiology C Photochemistry Reviews,2000,1(1):1-21.
[2] Lee, Seul Y, Park S J. TiO2 photocatalyst for water treatment applications[J].Journal of Industrial & Engineering Chemistry,2013,19(6):1761-1769.
Lee, Seul Y, Park S J. TiO2 photocatalyst for water treatment applications[J].Journal of Industrial & Engineering Chemistry,2013,19(6):1761-1769.
[3] Likodimos, Vlassis. Photonic crystal-assisted visible light activated TiO2 photocatalysis[J].Appl.Catal.B Environ.,2018,230:269-303.
Likodimos, Vlassis. Photonic crystal-assisted visible light activated TiO2 photocatalysis[J].Appl.Catal.B Environ.,2018,230:269-303.
[4] Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J].Applied Catalysis B Environmental,2012,125(33):331-349.
Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J].Applied Catalysis B Environmental,2012,125(33):331-349.
[5] Duan Y W, Chen X W, Zhang X X. Influence of carbon source on the anatase and brookite mixed phase of the C-doped TiO2 nanoparticles and their photocatalytic activity[J].Solid State Sciences,2018,86:12-18.
Duan Y W, Chen X W, Zhang X X. Influence of carbon source on the anatase and brookite mixed phase of the C-doped TiO2 nanoparticles and their photocatalytic activity[J].Solid State Sciences,2018,86:12-18.
[6] Zhou F, Song H B, Wang H Q, et al. N-Doped TiO2/sepiolite nanocomposites with enhanced visible-light catalysis: role of N precursors[J].Applied Clay Science,2018,166:9-17.
Zhou F, Song H B, Wang H Q, et al. N-Doped TiO2/sepiolite nanocomposites with enhanced visible-light catalysis: role of N precursors[J].Applied Clay Science,2018,166:9-17.
[7] Yi C, Liao Q, Deng W. The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation[J].Science of the Total Environment,2019,684:527-536.
Yi C, Liao Q, Deng W. The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation[J].Science of the Total Environment,2019,684:527-536.
[8] Gao Q Z, Si F Y, Zhang S S. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation[J].International Journal of Hydrogen Energy,2019,44(16):8011-8019.
Gao Q Z, Si F Y, Zhang S S. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation[J].International Journal of Hydrogen Energy,2019,44(16):8011-8019.
[10] Matsumoto T, Iyi N, Kaneko Y, et al. High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite[J].Catalysis Today,2007,120(2):226-232.
Matsumoto T, Iyi N, Kaneko Y, et al. High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite[J].Catalysis Today,2007,120(2):226-232.
[11] Wang X, Wang L L, Guo D, et al. Fabrication and photocatalytic performance of C, N, F-Tridoped TiO2 nanotubes[J].Catalysis Today,2019,327:182-189.
Wang X, Wang L L, Guo D, et al. Fabrication and photocatalytic performance of C, N, F-Tridoped TiO2 nanotubes[J].Catalysis Today,2019,327:182-189.
[17] Sarunas Varnagiris, Arturs Medvids, Martynas Lelis. Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis[J].Journal of Photochemistry and Photobiology A:Chemistry,2019,382:111941.
Sarunas Varnagiris, Arturs Medvids, Martynas Lelis. Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis[J].Journal of Photochemistry and Photobiology A:Chemistry,2019,382:111941.
[18] Huang H, Song Y, Li N, et al. One-step in-situ reparation of N-Doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation[J].Applied Catalysis B:Environmental,2019,251:154-161.
Huang H, Song Y, Li N, et al. One-step in-situ reparation of N-Doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation[J].Applied Catalysis B:Environmental,2019,251:154-161.
[19] Wang J, Fan C Y, Ren Z M, et al. N-doped TiO2/C nanocomposites and N-doped TiO2 synthesised at different thermal treatment temperatures with the same hydrothermal precursor[J].Dalton Transactions,2014,43(36):13783-13791.
Wang J, Fan C Y, Ren Z M, et al. N-doped TiO2/C nanocomposites and N-doped TiO2 synthesised at different thermal treatment temperatures with the same hydrothermal precursor[J].Dalton Transactions,2014,43(36):13783-13791.
[20] Shio Komatsuda, Yusuke Asakura, Junie Jhon M. Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N,C)-TiO2 by charge transfer between F-TiO2 and (N,C)-TiO2 through their doping levels[J].Applied Catalysis B: Environmental,2018,238:358-364.
Shio Komatsuda, Yusuke Asakura, Junie Jhon M. Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N,C)-TiO2 by charge transfer between F-TiO2 and (N,C)-TiO2 through their doping levels[J].Applied Catalysis B: Environmental,2018,238:358-364.
[21] Chen Y, Li A, Li Q, et al. Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting[J].Journal of Materials Science & Technology,2018,34(6):955-960.
Chen Y, Li A, Li Q, et al. Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting[J].Journal of Materials Science & Technology,2018,34(6):955-960.
[23] Li H, Li J, Huo Y. Highly active TiO2 N photocatalysts prepared by treating TiO2 precursors in NH3/Ethanol fluid under supercritical conditions[J].Journal of Physical Chemistry B,2006,110(4):1559-65.
Li H, Li J, Huo Y. Highly active TiO2 N photocatalysts prepared by treating TiO2 precursors in NH3/Ethanol fluid under supercritical conditions[J].Journal of Physical Chemistry B,2006,110(4):1559-65.
[24] Alok Tripathi, Sheeba Narayanan. Impact of TiO2 and TiO2/g-C3N4 nanocomposite to treat industrial wastewater[J].Environmental Nanotechnology, Monitoring & Management,2018,10:280-291.
Alok Tripathi, Sheeba Narayanan. Impact of TiO2 and TiO2/g-C3N4 nanocomposite to treat industrial wastewater[J].Environmental Nanotechnology, Monitoring & Management,2018,10:280-291.
[27] Li Y, Jiang Y, Peng S, et al. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes[J].Journal of Hazardous Materials,2010,182(1-3):90-96.
Li Y, Jiang Y, Peng S, et al. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes[J].Journal of Hazardous Materials,2010,182(1-3):90-96.
[28] HamiltonW J, Byrne J A, Dunlop P S M, et al. Evaluating the mechanism of visible light activity for N,F- TiO2 using photoelectrochemistry[J].J. Phys. Chem.C,2014,118(23):12206-12215.
HamiltonW J, Byrne J A, Dunlop P S M, et al. Evaluating the mechanism of visible light activity for N,F- TiO2 using photoelectrochemistry[J].J. Phys. Chem.C,2014,118(23):12206-12215.
[32] Mitoraj D, Kisch, Dr H. The Nature of nitrogen-modified titanium dioxide photocatalysts active in visible light[J].Angewandte Chemie International Edition,2008,47(51):9975-9978.
Mitoraj D, Kisch, Dr H. The Nature of nitrogen-modified titanium dioxide photocatalysts active in visible light[J].Angewandte Chemie International Edition,2008,47(51):9975-9978.