• Acta Photonica Sinica
  • Vol. 51, Issue 8, 0851503 (2022)
Tao ZHU, Laiyang DANG, Jiali LI, Tianyi LAN, Ligang HUANG, and Leilei SHI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20225108.0851503 Cite this Article
    Tao ZHU, Laiyang DANG, Jiali LI, Tianyi LAN, Ligang HUANG, Leilei SHI. Narrow Linewidth Laser Technology and Development(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851503 Copy Citation Text show less
    References

    [1] T H MAIMAN. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] T H MAIMAN. Optical and microwave-optical experiments in ruby. Physical Review Letters, 4, 564(1960).

    [3] Weilian SONG. The developmental of laser processing technology. Laser & Infrared, 36, 755-758(2006).

    [4] K K MURRAY, C A SENEVIRATNE, S GHORAI. High resolution laser mass spectrometry bioimaging. Methods, 104, 118-126(2016).

    [5] K PREDEHL, G GROSCHE, S M F RAUPACH et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441-444(2012).

    [6] A UCHIDA, K AMANO, M INOUE et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2, 728-732(2008).

    [7] Ruifeng WANG, Yanpu ZHANG, Zhiyan XU. Present situation and developing trend of application of laser technique to military. Infrared & Laser Engineering, 36, 308-311(2007).

    [8] J P GORDON, H J ZEIGER, C H TOWNES. The maser-new type of microwave amplifier, frequency standard, and spectrometer. Physical Review, 99, 1264(1955).

    [9] A L SCHAWLOW, C H TOWNES. Infrared and optical masers. Physical Review, 112, 1940(1958).

    [10] C HENRY. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 18, 259-264(1982).

    [11] B O GUAN, H Y TAM, S T LAU et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser. IEEE Photonics Technology Letters, 17, 169-171(2004).

    [12] S B FOSTER, G A CRANCH, J HARRISON et al. Distributed feedback fiber laser strain sensor technology. Journal of Lightwave Technology, 35, 3514-3530(2017).

    [13] Y ZHENG, C GAO, R WANG et al. Single frequency 1645 nm Er: YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode. Optics Letters, 38, 784-786(2013).

    [14] S HUANG, T ZHU, G YIN et al. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering. Optics Letters, 42, 5286-5289(2017).

    [15] A A RYBALTOVSKY, O V BUTOV, S A VASILIEV et al. Continuous-wave operation of an erbium-doped short-cavity composite fiber laser. Results in Physics, 16, 102832(2020).

    [16] J F Y GRAVEL, F R DOUCET, P BOUCHARD et al. Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 26, 1354-1361(2011).

    [17] M W WRIGHT, D A FRANZEN, H HEMMATI et al. Qualification and reliability testing of a commercial high-power fiber-coupled semiconductor laser for space applications. Optical Engineering, 44, 054204(2005).

    [18] R LI, N MADAMPOULOS, Z ZHU et al. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers. Applied Optics, 51, 5011-5018(2012).

    [19] L DANG, L HUANG, Y CAO et al. Side mode suppression of SOA fiber hybrid laser based on distributed self-injection feedback. Optics & Laser Technology, 147, 107619(2022).

    [20] Z WANG, J SHANG, S LI et al. All-polarization maintaining single-longitudinal-mode fiber laser with ultra-high OSNR, sub-KHz linewidth and extremely high stability. Optics & Laser Technology, 141, 107135(2021).

    [21] Y LIU, M ZHANG, J ZHANG et al. Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator. Journal of Lightwave Technology, 35, 1744-1749(2017).

    [22] L JIANG, L SHI, J LUO et al. Narrow linewidth VCSEL based on resonant optical feedback from an on-chip microring add-drop filter. Optics Letters, 46, 2320-2323(2021).

    [23] N Y VOO, P HORAK, M IBSEN et al. Anomalous linewidth behavior in short-cavity single-frequency fiber lasers. IEEE Photonics Technology Letters, 17, 546-548(2005).

    [24] K PETERMANN. External optical feedback phenomena in semiconductor lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1, 480-489(1995).

    [25] R A CENDEJAS, M C PHILLIPS, T L MYERS et al. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector. Optics Express, 18, 26037-26045(2010).

    [26] B HAMELIN, J YANG, A DARUWALLA et al. Monocrystalline silicon carbide disk resonators on phononic crystals with ultra-low dissipation bulk acoustic wave modes. Scientific Reports, 9, 1-8(2019).

    [27] H CHEN, S ZHANG, H FU et al. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter. Optics Express, 24, 2765-2773(2016).

    [28] D T STACK, P J LEE, Q QURAISHI. Simple and efficient absorption filter for single photons from a cold atom quantum memory. Optics Express, 23, 6822-6832(2015).

    [29] L DANG, L HUANG, L SHI et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electronic Advances, 6, 210149(2023).

    [30] F LI, I P IKECHUKWU, T LAN et al. Rayleigh scattering assisted ultra-narrow linewidth linear-cavity laser. Applied Physics Express, 12, 082001(2019).

    [31] L DANG, L HUANG, Y LI et al. A longitude-purification mechanism for tunable fiber laser based on distributed feedback. Journal of Lightwave Technology, 40, 206-214(2022).

    [32] W MA, B XIONG, C SUN et al. Linewidth narrowing of mutually injection locked semiconductor lasers with short and long delay. Applied Sciences, 9, 1436(2019).

    [33] T KESSLER, C HAGEMANN, C GREBING et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, 6, 687-692(2012).

    [34] V V SPIRIN, J L B ESCOBEDO, D A KOROBKO et al. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Optics Express, 28, 478-484(2020).

    [35] T KESSLER, C HAGEMANN, C GREBING et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, 6, 687-692(2012).

    [36] W LEWOCZKO-ADAMCZYK, C PYRLIK, J HÄGER et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Optics Express, 23, 9705-9709(2015).

    [37] T KOMLJENOVIC, S SRINIVASAN, E NORBERG et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 214-222(2015).

    [38] Rensheng SHEN, Yushu ZHANG, Guotong DU. Latest development of fiber lasers. Semiconductor Optoelectronics, 30, 1-5(2009).

    [39] Xingkai LANG, Peng JIA, Yongyi CHEN等. Advances in narrow linewidth diode lasers. SCIENTIA SINICA Informationis, 49, 649-662(2019).

    [40] H KOGELNIK, C V SHANK. Stimulated emission in a periodic structure. Applied Physics Letters, 18, 152-154(1971).

    [41] M NAKAMURA, A YARIV, H YEN et al. Optically pumped GaAs surface laser with corrugation feedback. Applied Physics Letters, 22, 515-516(1973).

    [42] M BELT, T HUFFMAN, M DAVENPORT et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. Optics Letters, 38, 4825-4828(2013).

    [43] J DUAN, H HUANG, Z LU et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Applied Physics Letters, 112, 121102(2018).

    [44] D HUANG, M TRAN, J GUO et al. Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon, 1-3(2019).

    [45] C SPIEGELBERG, J H GENG, Y D HU et al. Low-noise narrow-linewidth fiber laser at 1550 nm. Journal of Lightwave Technology, 22, 57-62(2004).

    [46] C YANG, X GUAN, W LIN et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser. Optics Express, 25, 29078-29085(2017).

    [47] W WALASIK, D TRAORE, A AMAVIGAN et al. 2 μm narrow linewidth all-fiber DFB fiber bragg grating lasers for Ho-and Tm-doped fiber-amplifier applications. Journal of Lightwave Technology, 39, 5096-5102(2021).

    [48] A SUZUKI, Y TAKAHASHI, M YOSHIDA et al. An ultralow noise and narrow linewidth λ/4-shifted DFB Er-Doped fiber laser with a ring cavity configuration. IEEE Photonics Technology Letters, 19, 1463-1465(2007).

    [49] M C COLLODO, F SEDLMEIR, B SPRENGER et al. Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser. Optics Express, 22, 19277-19283(2014).

    [50] J ZHANG, Q SHENG, L ZHANG et al. 2.56 W single-frequency all fiber oscillator at 1720 nm. Advanced Photonics Research, 2100256(2021).

    [51] T FENG, D WEI, W BI et al. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter. Optics Express, 29, 31179-31200(2021).

    [52] T J KANE, R L BYER. Solid-state non-planar internally reflecting ring laser.

    [53] A C NILSSON, E K GUSTAFSON. Eigenpolarization theory of monolithic nonplanar ring oscillators. IEEE Journal of Quantum Electronics, 25, 767-790(1989).

    [54] H WANG, M GAO. High power single-frequency laser output from a diffusion-bonded monolithic nonplanar Ho: YAG ring oscillator, 11437, 1143703(2020).

    [55] W DENG, T YANG, J CAO et al. High-efficiency 1064 nm nonplanar ring oscillator Nd: YAG laser with diode pumping at 885 nm. Optics Letters, 43, 1562-1565(2018).

    [56] D K SHIN, B M HENSON, R I KHAKIMOV et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0-1.1 µm. Optics Express, 24, 27403-27414(2016).

    [57] D CHEN, Z FANG, H CAI et al. Polarization characteristics of an external cavity diode laser with Littman–Metcalf configuration. IEEE Photonics Technology Letters, 21, 984-986(2009).

    [58] T HIETA, M VAINIO, C MOSER et al. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Optics Communications, 282, 3119-3123(2009).

    [59] T MCRAE, K LEE, M MCGOVERN et al. Thermo-optic locking of a semiconductor laser to a microcavity resonance. Optics Express, 17, 21977-21985(2009).

    [60] B STERN, X C JI, A DUTT et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Optics Letters, 42, 4541-4544(2017).

    [61] C XIANG, P A MORTON, J E BOWERS. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Optics Letters, 44, 3825-3828(2019).

    [62] F WEI, F YANG, X ZHANG et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Optics Express, 24, 17406-17415(2016).

    [63] N SCHUNK, K PETERMANN. Noise analysis of injection-locked semiconductor injection lasers. IEEE Journal of Quantum Electronics, 22, 642-650(1986).

    [64] N SCHUNK, K PETERMANN. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE Journal of Quantum Electronics, 24, 1242-1247(1988).

    [65] G YABRE, W DE, D VAN et al. Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE Journal of Quantum Electronics, 36, 385-393(2000).

    [66] E K LAU, L J WONG, M WU. Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE Journal of Selected Topics in Quantum Electronics, 15, 618-633(2009).

    [67] M TRAN, D HUANG, J BOWERS. Tutorial on narrow linewidth tunable semiconductor lasers using Si/Ⅲ-Ⅴ heterogeneous integration. APL Photonics, 4, 111101(2019).

    [68] X ZHANG, N H ZHU, L XIE et al. A stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking. Journal of Lightwave Technology, 25, 1027-1033(2007).

    [69] Y N ZHANG, Y F ZHANG, Q L ZHAO et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser. Optics Express, 24, 26209(2016).

    [70] Q L ZHAO, Z T ZHANG, B WU et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection. Photonics Research, 6, 326-331(2018).

    [71] L HAO, X WANG, K JIA et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics. Optics Letters, 46, 3769-3772(2021).

    [72] J JI, H WANG, J MA et al. Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration. Optics Letters, 47, 1525-1528(2022).

    [73] S B ZHENG. Jaynes-Cummings model with a collective atomic mode. Physical Review A, 77, 045802(2008).

    [74] A ROMANELLI. Generalized Jaynes-Cummings model as a quantum search algorithm. Physical Review A, 80, 014302(2009).

    [75] V PEANO, M THORWART. Quasienergy description of the driven Jaynes-Cummings model. Physical Review B, 82, 155129(2010).

    [76] Q H CHEN, T LIU, Y Y ZHANG et al. Exact solutions to the Jaynes-Cummings model without the rotating-wave approximation. Europhysics Letters, 96, 14003(2011).

    [77] F LI, T LAN, L HUANG et al. Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide. Opto-Electronic Advances, 2, 190012(2019).

    [78] T ZHU, X BAO, L CHEN et al. Experimental study on stimulated Rayleigh scattering in optical fibers. Optics Express, 18, 22958-22963(2010).

    [79] T ZHU, X BAO, L CHEN. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering. Optics Communications, 285, 1371-1374(2012).

    [80] H WANG, P LU, C CHEN et al. Stabilizing Brillouin random laser with photon localization by feedback of distributed random fiber grating array. Optics Express, 30, 20712-20724(2022).

    [81] A V DOSTOVALOV, A A WOLF, A V PARYGIN et al. Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule. Optics Express, 24, 16232-16237(2016).

    [82] M I SKVORTSOV, A A WOLF, A V DOSTOVALOV et al. Narrow-linewidth Er-doped fiber lasers with random distributed feedback provided by artificial Rayleigh scattering. Journal of Lightwave Technology, 40, 1829-1835(2022).

    [83] H LEE, T CHEN, J LI et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photonics, 6, 369-373(2012).

    [84] R GAO, N YAO, J GUAN et al. Lithium niobate microring with ultra-high Q factor above 10 8. Chinese Optics Letters, 20, 011902(2022).

    [85] X ZHANG, Y YIN, X YIN et al. Characterizing microring resonators using optical frequency domain reflectometry. Optics Letters, 46, 2400-2403(2021).

    [86] T ZHU, X BAO, L CHEN. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber. Journal of Lightwave Technology, 29, 1802-1807(2011).

    [87] T ZHU, F Y CHEN, S H HUANG et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber. Laser Physics Letters, 10, 055110(2013).

    [88] T ZHU, S HUANG, L SHI et al. Rayleigh backscattering: a method to highly compress laser linewidth. Chinese Science Bulletin, 59, 4631-4636(2014).

    [89] S HUANG, T ZHU, Z CAO et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope. IEEE Photonics Technology Letters, 28, 759-762(2016).

    [90] Y LI, L HUANG, L GAO et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring. Optics Express, 26, 26896-26906(2018).

    [91] L DANG, L HUANG, Y CAO et al. Side mode suppression of SOA fiber hybrid laser based on distributed self-injection feedback. Optics & Laser Technology, 147, 107619(2022).

    [92] S HUANG, T ZHU, Z CAO et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope. IEEE Photonics Technology Letters, 28, 759-762(2016).

    [93] S HUANG, T ZHU, M LIU et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope. Scientific Reports, 7, 41988(2017).

    [94] W LIANG, V S ILCHENKO, D ELIYAHU et al. Ultralow noise miniature external cavity semiconductor laser. Nature Communications, 6, 1-6(2015).

    [95] W JIN, Q F YANG, L CHANG et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nature Photonics, 15, 346-353(2021).

    [96] Y LI, Y ZHANG, H CHEN et al. Tunable self-injected Fabry–Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. Journal of Lightwave Technology, 36, 3269-3274(2018).

    [97] A MINARDO, R BERNINI, R RUIZ-LOMBERA et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Optics Express, 24, 29994-30001(2016).

    [98] F WANG, C ZHU, C CAO et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding. Optics Express, 25, 3504-3513(2017).

    [99] E AWWAD, C DORIZE, S GUERRIER et al. Detection-localization-identification of vibrations over long distance SSMF with coherent Δφ-OTDR. Journal of Lightwave Technology, 38, 3089-3095(2020).

    [100] M SEIMETZ. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation, 1-3(2008).

    [101] S LI, D ZHANG, J ZHAO et al. Silicon micro-ring tunable laser for coherent optical communication. Optics Express, 24, 6341-6349(2016).

    [102] H GUAN, A NOVACK, T GALFSKY et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Optics Express, 26, 7920-7933(2018).

    [103] B SHEN, L CHANG, J LIU et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [104] H SHU, L CHANG, Y TAO et al. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    Tao ZHU, Laiyang DANG, Jiali LI, Tianyi LAN, Ligang HUANG, Leilei SHI. Narrow Linewidth Laser Technology and Development(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851503
    Download Citation