[4] Rahman S, Ahmed T, Huynh M, et al. Auto-Scaling VNFs Using Machine Learning to Improve QoS and Reduce Cost [C]// 2018 IEEE International Conference on Communications. Kansas City, USA:IEEE,2018: 1-6.
[5] Yan B, Zhao Y, Li Y, et al. Actor-Critic-based Resource Allocation for Multi-Modal Optical Networks [C]// IEEE GLOBCOM Workshop on Machine Learning for Communications. Abu Dhabi, UAE:IEEE,2018: 8644190.
[6] Wang Z, Min Z, Danshi W, et al. Failure Prediction Using Machine Learning and Time Series in Optical Network [J]. Optics Express,2017,25(16):18553-18565.
[7] Barletta L, Giusti A, Rottondi C, et al. QoT Estimation for Unestablished Lighpaths Using Machine Learning [C]// OFC. Los Angeles, CA, USA:IEEE, 2017:16929948.
[8] Panayiotou T, Chatzis S P, Ellinas G. Leveraging Statistical Machine Learning to Address Failure Localization in Optical Networks [J]. Journal of Optical Communications and Networking,2018,10(3): 162-173.
[9] Kim W, Choi B, Hong E, et al. A Taxonomy of Dirty Data [J]. Data Mining and Knowledge Discovery, 2003, 7(1): 81-99.
[10] He H, Garcia E A. Learning from Imbalanced Data [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284.
[11] Chawla N V, Japkowicz N, Kotcz A. Editorial: Special Issue on Learning from Imbalanced Data Sets [J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 1-6.
[12] Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques [M]. San Francisco: Morgan Kauffman Publishers, 2011.
[13] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic Minority Over-Sampling Technique [J].Journal of Artificial Intelligence Research,2002,16(1):321-357.
[14] Han H, Wang W Y, Mao B H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning [C]// International Conference on Intelligent Computing. Hefei, China:Lecture Notes in Computer Science, 2005:878-887.