• Nano-Micro Letters
  • Vol. 16, Issue 1, 276 (2024)
Jung Hwan Park1,†, Srinivas Pattipaka2,†, Geon-Tae Hwang2,†, Minok Park3..., Yu Mi Woo1, Young Bin Kim4, Han Eol Lee5, Chang Kyu Jeong5, Tiandong Zhang6,7, Yuho Min8, Kwi-Il Park8,*, Keon Jae Lee4,** and Jungho Ryu9,***|Show fewer author(s)
Author Affiliations
  • 1Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk 39177, Republic of Korea
  • 2Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
  • 3Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • 4Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
  • 5Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896 Jeonbuk, Republic of Korea
  • 6School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, People’s Republic of China
  • 7Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, People’s Republic of China
  • 8Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu 41566, Republic of Korea
  • 9School of Materials Science and Engineering, Yeungnam University, Daehak-Ro, Gyeongsan-Si, 38541 Gyeongsangbuk-do, Republic of Korea
  • show less
    DOI: 10.1007/s40820-024-01483-5 Cite this Article
    Jung Hwan Park, Srinivas Pattipaka, Geon-Tae Hwang, Minok Park, Yu Mi Woo, Young Bin Kim, Han Eol Lee, Chang Kyu Jeong, Tiandong Zhang, Yuho Min, Kwi-Il Park, Keon Jae Lee, Jungho Ryu. Light–Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications[J]. Nano-Micro Letters, 2024, 16(1): 276 Copy Citation Text show less
    References

    [1] Y. Hu, M. Wu, F. Chi, G. Lai, P. Li et al., Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023).

    [2] F. Han, G. Meng, F. Zhou, L. Song, X. Li et al., Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Sci. Adv. 1, e1500605 (2015).

    [3] J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi et al., Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7, eabd6978 (2021).

    [4] C. Yuan, Sustainable battery manufacturing in the future. Nat. Energy 8, 1180–1181 (2023).

    [5] Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    [6] H. Tang, K. Geng, L. Wu, J. Liu, Z. Chen et al., Fuel cells with an operational range of –20 to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 7, 153–162 (2022).

    [7] L. Shi, Y. Zhao, S. Matz, S. Gottesfeld, B.P. Setzler et al., A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nat. Energy 7, 238–247 (2022).

    [8] Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 378, 181–186 (2022).

    [9] S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024).

    [10] C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16, 123 (2024).

    [11] C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020).

    [12] C. Li, Md.M. Islam, J. Moore, J. Sleppy, C. Morrison et al., Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 7, 13319 (2016).

    [13] M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    [14] G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju et al., Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018).

    [15] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    [16] G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

    [17] X. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma et al., Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023).

    [18] W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).

    [19] T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 (2022).

    [20] R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022).

    [21] J. Park, K. Kim, Y. Kim, T.S. Kim, I.S. Min et al., A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. Sci. Adv. 9, eadi8918 (2023).

    [22] A. Kurakula, S.A. Graham, M.V. Paranjape, P. Manchi, V.S. Kavarthapu et al., Multimodal energy generation and intruder sensing platform via aluminum titanate/poly-glucosamine composite film-based hybrid nanogenerators. Adv. Funct. Mater. (2024).

    [23] J.H. Shin, Y. Bin Kim, J.H. Park, J.S. Lee, S.H. Park et al., Light-material interfaces for self-powered optoelectronics. J. Mater. Chem. A 9, 25694 (2021).

    [24] X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024).

    [25] W. Shi, L. Zhang, R. Jing, Y. Huang, F. Chen et al., Moderate fields, maximum potential: achieving high records with temperature-stable energy storage in lead-free BNT-based ceramics. Nano-Micro Lett. 16, 91 (2024).

    [26] J. Ma, J. Qin, S. Zheng, Y. Fu, L. Chi et al., Hierarchically structured Nb2O5 microflowers with enhanced capacity and fast-charging capability for flexible planar sodium ion micro-supercapacitors. Nano-Micro Lett. 16, 67 (2024).

    [27] W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023).

    [28] J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16, 22 (2023).

    [29] L. Chen, H. Yu, J. Wu, S. Deng, H. Liu et al., Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett. 15, 65 (2023).

    [30] X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible In-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022).

    [31] P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 (2023).

    [32] C. Bao, P. Tang, D. Sun, S. Zhou, Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021).

    [33] K.W. Tan, B. Jung, J.G. Werner, E.R. Rhoades, M.O. Thompson et al., Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 349, 54–58 (2015).

    [34] Y. Yuan, X. Li, L. Jiang, M. Liang, X. Zhang et al., Laser maskless fast patterning for multitype microsupercapacitors. Nat. Commun. 14, 3967 (2023).

    [35] X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10, 3112 (2019).

    [36] M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis et al., Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016).

    [37] G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016).

    [38] J. Ding, Y. Zhou, W. Xu, F. Yang, D. Zhao et al., Ultraviolet-irradiated all-organic nanocomposites with polymer dots for high-temperature capacitive energy storage. Nano-Micro Lett. 16, 59 (2023).

    [39] J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27, 1701138 (2017).

    [40] G.W. Shim, W. Hong, J.H. Cha, J.H. Park, K.J. Lee et al., TFT channel materials for display applications: from amorphous silicon to transition metal dichalcogenides. Adv. Mater. 32, e1907166 (2020).

    [41] D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017).

    [42] H. Park, J.J. Park, P. Bui, H. Yoon, C.P. Grigoropoulos et al., Laser-based selective material processing for next-generation additive manufacturing. Adv. Mater. (2023).

    [43] S. Song, H. Hong, K.Y. Kim, K.K. Kim, J. Kim et al., Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17, 21443–21454 (2023).

    [44] T.H. Im, D.Y. Park, H.K. Lee, J.H. Park, C.K. Jeong et al., Xenon flash lamp-induced ultrafast multilayer graphene growth. Part. Part. Syst. Charact. 34, 1600429 (2017).

    [45] J.H. Park, J. Seo, C. Kim, D.J. Joe, H.E. Lee et al., Flash-induced stretchable Cu conductor via multiscale-interfacial couplings. Adv. Sci. 5, 1801146 (2018).

    [46] H. Zhang, D. Yang, T. Ma, H. Lin, B. Jia, Flash-induced ultrafast production of graphene/MnO with extraordinary supercapacitance. Small Methods 5, e2100225 (2021).

    [47] M.V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello et al.: Laser-induced thermal processes: heat transfer, generation of stresses, melting and solidification, vaporization, and phase explosion. In: Handbook of Laser Micro- and Nano-Engineering, pp. 83–163. Springer International Publishing, Cham, (2021),

    [48] M. Park, Y. Gu, X. Mao, C.P. Grigoropoulos, V. Zorba, Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 9, eadf6397 (2023).

    [49] J. Shin, J. Ko, S. Jeong, P. Won, Y. Lee et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 20, 100–107 (2021).

    [50] J. Yin, L. Lan, Y. Zhang, H. Ni, Y. Tan et al., Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat. Commun. 12, 7097 (2021).

    [51] S. Kim, J.H. Son, S.H. Lee, B.K. You, K.-I. Park et al., Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv. Mater. 26, 7480–7487 (2014).

    [52] C.K. Jeong, K.-I. Park, J.H. Son, G.-T. Hwang, S.H. Lee et al., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7, 4035–4043 (2014).

    [53] C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang et al., Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017).

    [54] J.H. Park, H.E. Lee, C.K. Jeong, D.H. Kim, S.K. Hong et al., Self-powered flexible electronics beyond thermal limits. Nano Energy 56, 531–546 (2019).

    [55] B. Radfar, F. Es, R. Turan, Effects of different laser modified surface morphologies and post-texturing cleanings on c-Si solar cell performance. Renew. Energy 145, 2707–2714 (2020).

    [56] J. Wang, L. Cao, S. Li, J. Xu, R. Xiao et al., Effect of laser-textured Cu foil with deep ablation on Si anode performance in Li-ion batteries. Nanomaterials 13, 2534 (2023).

    [57] M.I. Sánchez, P. Delaporte, Y. Spiegel, B. Franta, E. Mazur et al., A laser-processed silicon solar cell with photovoltaic efficiency in the infrared. Phys. Status Solidi A 218, 2000550 (2021).

    [58] E. Ravesio, A.H.A. Lutey, D. Versaci, L. Romoli, S. Bodoardo, Nanosecond pulsed laser texturing of Li-ion battery electrode current collectors: Electrochemical characterisation of cathode half-cells. Sustain. Mater. Technol. 38, e00751 (2023).

    [59] J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok et al., Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28, 4151–4159 (2016).

    [60] H.S. Wang, T.H. Im, Y. Bin Kim, S.H. Sung, S. Min et al., Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor. Mater. 9, 061112 (2021).

    [61] T. Sugiyama, H. Masuhara, Laser-induced crystallization and crystal growth. Chem. Asian J. 6, 2878–2889 (2011).

    [62] M. Smith, R. McMahon, M. Voelskow, D. Panknin, W. Skorupa, Modelling of flash-lamp-induced crystallization of amorphous silicon thin films on glass. J. Cryst. Growth 285, 249–260 (2005).

    [63] K.K. Kim, I. Ha, P. Won, D.-G. Seo, K.-J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10, 2582 (2019).

    [64] J. Jais, J.H. Park, B. Kang, Additive manufacturing of digitally programmable hierarchical biomimetic surfaces for hydrodynamic informatics. Addit. Manuf. 76, 103763 (2023).

    [65] E. Gilshtein, S. Pfeiffer, M.D. Rossell, J. Sastre, L. Gorjan et al., Millisecond photonic sintering of iron oxide doped alumina ceramic coatings. Sci. Rep. 11, 3536 (2021).

    [66] H. Kong, J. Kwon, D. Paeng, W.J. Jung, S. Ghimire et al., Laser-induced crystalline-phase transformation for hematite nanorod photoelectrochemical cells. ACS Appl. Mater. Interfaces 12, 48917–48927 (2020).

    [67] K. Ohdaira, K. Sawada, N. Usami, S. Varlamov, H. Matsumura, Large-grain polycrystalline silicon films formed through flash-lamp-induced explosive crystallization. Jpn. J. Appl. Phys. 51, 10NB15 (2012).

    [68] H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, e1705148 (2018).

    [69] H. Palneedi, D. Maurya, L.D. Geng, H.-C. Song, G.-T. Hwang et al., Enhanced self-biased magnetoelectric coupling in laser-annealed Pb(Zr, Ti)O3 thick film deposited on Ni foil. ACS Appl. Mater. Interf. 10, 11018–11025 (2018).

    [70] T.H. Im, J.H. Lee, H.S. Wang, S.H. Sung, Y. Bin Kim et al., Flashlight-material interaction for wearable and flexible electronics. Mater. Today 51, 525–551 (2021).

    [71] I.H. Kim, T.H. Im, H.E. Lee, J.S. Jang, H.S. Wang et al., Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction. Small 15, e1901529 (2019).

    [72] I. Choi, H.Y. Jeong, D.Y. Jung, M. Byun, C.-G. Choi et al., Laser-induced solid-phase doped graphene. ACS Nano 8, 7671–7677 (2014).

    [73] K. Lee, M. Park, K.G. Malollari, J. Shin, S.M. Winkler et al., Laser-induced graphitization of polydopamine leads to enhanced mechanical performance while preserving multifunctionality. Nat. Commun. 11, 4848 (2020).

    [74] J. Theerthagiri, K. Karuppasamy, S.J. Lee, R. Shwetharani, H.S. Kim et al., Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci. Appl. 11, 250 (2022).

    [75] S. Song, S.-H. Um, J. Park, I. Ha, J. Lee et al., Rapid synthesis of multifunctional apatite via the laser-induced hydrothermal process. ACS Nano 16, 12840–12851 (2022).

    [76] J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust Cu electrode on glass substrates and its application for thin-film μLEDs. Adv. Mater. 33, e2007186 (2021).

    [77] T.H. Im, C.H. Lee, J.C. Kim, S. Kim, M. Kim et al., Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy 84, 105889 (2021).

    [78] Bäuerle, D.: Material transformations, laser cleaning. In: Laser Processing and Chemistry. Berlin, Heidelberg: Springer, pp. 535–559, (2011).

    [79] C.P. Grigoropoulos, Transport in laser microfabrication: Fundamentals and applications (Cambridge University Press, Cambridge, UK, 2009)

    [80] T.R. Steele, D.C. Gerstenberger, A. Drobshoff, R.W. Wallace, Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system. Opt. Lett. 16, 399–401 (1991).

    [81] S.A. Jalil, B. Lai, M. ElKabbash, J. Zhang, E.M. Garcell et al., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci. Appl. 9, 14 (2020).

    [82] I. Choi, S.-J. Lee, J.C. Kim, Y.-G. Kim, D.Y. Hyeon et al., Piezoelectricity of picosecond laser-synthesized perovskite BaTiO3 nanoparticles. Appl. Surf. Sci. 511, 145614 (2020).

    [83] S. Park, J. Park, Y.-G. Kim, S. Bae, T.-W. Kim et al., Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020).

    [84] J.A. Spechler, K.A. Nagamatsu, J.C. Sturm, C.B. Arnold, Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode. ACS Appl. Mater. Interfaces 7, 10556–10562 (2015).

    [85] D. Paeng, J.-H. Yoo, J. Yeo, D. Lee, E. Kim et al., Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation. Adv. Mater. 27, 2762–2767 (2015).

    [86] S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuat. A Phys. 134, 161–168 (2007).

    [87] J. Long, M.H. Eliceiri, L. Wang, Z. Vangelatos, Y. Ouyang et al., Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets. Opt. Laser Technol. 134, 106647 (2021).

    [88] C. Grigoropoulos, M. Rogers, S.H. Ko, A.A. Golovin, B.J. Matkowsky, Explosive crystallization in the presence of melting. Phys. Rev. B 73, 184125 (2006).

    [89] K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014).

    [90] M.-Y. Pu, J.Z. Chen, Improved performance of dye-sensitized solar cells with laser-textured nanoporous TiO2 photoanodes. Mater. Lett. 66, 162–164 (2012).

    [91] D. He, J. Jin, Z. Yuan, L. Wang, Effect of ArF excimer laser annealing on morphology and surface plasmon resonance properties of Ag nanoparticles. Appl. Phys. A 125, 423 (2019).

    [92] D. Angmo, T.T. Larsen-Olsen, M. Jørgensen, R.R. Søndergaard, F.C. Krebs, Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. 3, 172–175 (2013).

    [93] J.Y. Seok, S. Kim, I. Yang, J.H. Park, J. Lee et al., Strategically controlled flash irradiation on silicon anode for enhancing cycling stability and rate capability toward high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 15205–15215 (2021).

    [94] H.E. Lee, J.H. Park, D. Jang, J.H. Shin, T.H. Im et al., Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 75, 104951 (2020).

    [95] U. Okoroanyanwu, A. Bhardwaj, J.J. Watkins, Large area millisecond preparation of high-quality, few-layer graphene films on arbitrary substrates via xenon flash lamp photothermal pyrolysis and their application for high-performance micro-supercapacitors. ACS Appl. Mater. Interfaces 15, 13495–13507 (2023).

    [96] S. Gilje, S. Dubin, A. Badakhshan, J. Farrar, S.A. Danczyk et al., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419–423 (2010).

    [97] T. Jeon, H.M. Jin, S.H. Lee, J.M. Lee, H.I. Park et al., Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS Nano 10, 7907–7914 (2016).

    [98] S. Back, J.H. Park, B. Kang, Microsupercapacitive stone module for natural energy storage. ACS Nano 16, 11708–11719 (2022).

    [99] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

    [100] L. Xu, C.P. Grigoropoulos, T.-J. King, High-performance thin-silicon-film transistors fabricated by double laser crystallization. J. Appl. Phys. 99, 034508 (2006).

    [101] G. Yuan, T. Wan, A. BaQais, Y. Mu, D. Cui et al., Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212, 118101 (2023).

    [102] M. Kim, M.G. Gu, H. Jeong, E. Song, J.W. Jeon et al., Laser scribing of fluorinated polyimide films to generate microporous structures for high-performance micro-supercapacitor electrodes. ACS Appl. Energy Mater. 4, 208–214 (2021).

    [103] W. Liu, V.S. Turkani, V. Akhavan, B.A. Korgel, Photonic lift-off process to fabricate ultrathin flexible solar cells. ACS Appl. Mater. Interfaces 13, 44549–44555 (2021).

    [104] H. Palneedi, I. Choi, G.-Y. Kim, V. Annapureddy, D. Maurya et al., Tailoring the magnetoelectric properties of Pb(Zr, Ti)O3 film deposited on amorphous metglas foil by laser annealing. J. Am. Ceram. Soc. 99, 2680–2687 (2016).

    [105] H. Palneedi, D. Maurya, G.-Y. Kim, V. Annapureddy, M.-S. Noh et al., Unleashing the full potential of magnetoelectric coupling in film heterostructures. Adv. Mater. 29, 1605688 (2017).

    [106] D. Paeng, J. Yeo, D. Lee, S.-J. Moon, C.P. Grigoropoulos, Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles. Appl. Phys. A 120, 1229–1240 (2015).

    [107] I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun et al., Laser-induced phase separation of silicon carbide. Nat. Commun. 7, 13562 (2016).

    [108] A. Imparato, C. Minarini, A. Rubino, P. Tassini, F. Villani et al., Excimer laser induced crystallization of amorphous silicon on flexible polymer substrates. Thin Solid Films 487, 58–62 (2005).

    [109] M. Park, Z. Vangelatos, Y. Rho, H.K. Park, J. Jang et al., Comprehensive analysis of blue diode laser-annealing of amorphous silicon films. Thin Solid Films 696, 137779 (2020).

    [110] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    [111] H. Zhu, Z. Zhang, J. Zhou, K. Xu, D. Zhao et al., A computational study of heat transfer and material removal in picosecond laser micro-grooving of copper. Opt. Laser Technol. 137, 106792 (2021).

    [112] M. Park, J. Jeun, G. Han, C.P. Grigoropoulos, Time-resolved emission and scattering imaging of plume dynamics and nanoparticle ejection in femtosecond laser ablation of silver thin films. Appl. Phys. Lett. 116, 234105 (2020).

    [113] U. Okoroanyanwu, A. Bhardwaj, V. Einck, A. Ribbe, W. Hu et al., Rapid preparation and electrochemical energy storage applications of silicon carbide and silicon oxycarbide ceramic/carbon nanocomposites derived via flash photothermal pyrolysis of organosilicon preceramic polymers. Chem. Mater. 33, 678–694 (2021).

    [114] J. Park, S. Pramanick, D. Park, J. Yeo, J. Lee et al., Therapeutic-gas-responsive hydrogel. Adv. Mater. 29, 1702859 (2017).

    [115] H. Palneedi, D.R. Patil, S. Priya, K. Woo, J. Ye et al., Intense pulsed light thermal treatment of Pb(Zr, Ti)O3/metglas heterostructured films resulting in extreme magnetoelectric coupling of over 20 V cm-1 Oe-1. Adv. Mater. 35, e2303553 (2023).

    [116] S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We et al., High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016).

    [117] S.C. Singh, M. ElKabbash, Z. Li, X. Li, B. Regmi et al., Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020).

    [118] R.E. Russo, X. Mao, J.J. Gonzalez, V. Zorba, J. Yoo, Laser ablation in analytical chemistry. Anal. Chem. 85, 6162–6177 (2013).

    [119] M. Peddigari, J.H. Park, J.H. Han, C.K. Jeong, J. Jang et al., Flexible self-charging, ultrafast, high-power-density ceramic capacitor system. ACS Energy Lett. 6, 1383–1391 (2021).

    [120] L.-J. Huang, B.-J. Li, N.-F. Ren, Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy. Ceram. Int. 42, 7246–7252 (2016).

    [121] Y. Rho, K. Lee, L. Wang, C. Ko, Y. Chen et al., A laser-assisted chlorination process for reversible writing of doping patterns in graphene. Nat. Electron. 5, 505–510 (2022).

    [122] M.A. Al-Azawi, N. Bidin, Gold nanoparticles synthesized by laser ablation in deionized water. Chinese J. Phys. 53, 080803 (2015).

    [123] S. Hopman, K. Mayer, A. Fell, M. Mesec, F. Granek, Laser cutting of silicon with the liquid jet guided laser using achlorine-containing jet media. Appl. Phys. A 102, 621–627 (2011).

    [124] B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao et al., High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum. Appl. Phys. A 119, 61–68 (2015).

    [125] J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9, 6059–6068 (2015).

    [126] S.H. Sung, Y.S. Kim, D.J. Joe, B.H. Mun, B.K. You et al., Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy 51, 102–112 (2018).

    [127] H.E. Lee, J. Choi, S.H. Lee, M. Jeong, J.H. Shin et al., Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical Stimulator. Adv. Mater. 30, e1800649 (2018).

    [128] S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35, e2301627 (2023).

    [129] H. Lee, W. Manorotkul, J. Lee, J. Kwon, Y.D. Suh et al., Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires. ACS Nano 11, 12311–12317 (2017).

    [130] H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020).

    [131] M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013).

    [132] J. Lee, T.T. Nguyen, J. Bae, G. Jo, Y. Lee et al., 5.8-inch QHD flexible AMOLED display with enhanced bendability of LTPS TFTs. J. Soc. Inf. Disp. 26, 200–207 (2018).

    [133] E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 11, 11061–11105 (2019).

    [134] S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014).

    [135] S.-G. Kwon, S. Back, J.E. Park, B. Kang, Laser filament bottom-up growth sintering for multi-planar diffraction-limit printing and its application to ultra-transparent wearable thermo-electronics. J. Mater. Chem. C 6, 7759–7766 (2018).

    [136] C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui et al., Graphdiyne for high capacity and long-life lithium storage. Nano Energy 11, 481–489 (2015).

    [137] J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    [138] J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren et al., Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24, 2620–2625 (2012).

    [139] W.J. Hyun, E.B. Secor, G.A. Rojas, M.C. Hersam, L.F. Francis et al., All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27, 7058–7064 (2015).

    [140] K. Tetzner, Y.-H. Lin, A. Regoutz, A. Seitkhan, D.J. Payne et al., Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp. J. Mater. Chem. C 5, 11724–11732 (2017).

    [141] A.D. Wright, R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston et al., Band-tail recombination in hybrid lead iodide perovskite. Adv. Funct. Mater. 27, 1700860 (2017).

    [142] E. Yarali, C. Koutsiaki, H. Faber, K. Tetzner, E. Yengel et al., Recent progress in photonic processing of metal-oxide transistors. Adv. Funct. Mater. 30, 1906022 (2020).

    [143] H.M. Jin, D.Y. Park, S.J. Jeong, G.Y. Lee, J.Y. Kim et al., Flash light millisecond self-assembly of high χ block copolymers for wafer-scale sub-10 nm nanopatterning. Adv. Mater. 29, 1700595 (2017).

    [144] M. Peddigari, K. Woo, S.-D. Kim, M.S. Kwak, J.W. Jeong et al., Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. Nano Energy 90, 106598 (2021).

    [145] D.H. Jung, J.H. Park, H.E. Lee, J. Byun, T.H. Im et al., Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy 61, 236–244 (2019).

    [146] Y. Li, J.T. Han, C.A. Wang, H. Xie, J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    [147] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    [148] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    [149] J.L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power. Sources 206, 315–319 (2012).

    [150] Z. Gao, Y. Bai, H. Fu, J. Yang, T. Ferber, J. Feng, W. Jaegermann, Y. Huang, Interphase formed at Li6.4La3Zr1.4Ta0.6O12/Li interface enables cycle stability for solid-state batteries. Adv. Funct. Mater. 32, 2112113 (2022).

    [151] F. Shen, W. Guo, D. Zeng, Z. Sun, J. Gao et al., A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl. Mater. Interfaces 12, 30313–30319 (2020).

    [152] C. Zhang, R. Huang, P. Wang, Y. Wang, Z. Zhou et al., Highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel. ACS Appl. Mater. Interfaces 12, 58170–58178 (2020).

    [153] Y. Wang, P. Yan, J. Xiao, D. Deng, X. Lu et al., Materials selection and chemistry development for redox flow batteries. Meet. Abstr. 0MA2016-03, 425 (2016).

    [154] X. Huang, T. Xiu, M.E. Badding, Z. Wen, Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity. Ceram. Int. 44, 5660–5667 (2018).

    [155] Z. Huang, K. Liu, L. Chen, Y. Lu, Y. Li et al., Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int. J. Appl. Ceram. Technol. 14, 921 (2017).

    [156] X. Huang, C. Shen, K. Rui, J. Jin, M. Wu et al., Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM 68, 2593–2600 (2016).

    [157] Y. Ren, H. Deng, R. Chen, Y. Shen, Y. Lin et al., Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. J. Eur. Ceram. Soc. 35, 561–572 (2015).

    [158] M. Wood, X. Gao, R. Shi, T.W. Heo, J. Ali Espitia et al., Exploring the relationship between solvent-assisted ball milling, particle size, and sintering temperature in garnet-type solid electrolytes. J. Power. Sources 484, 229252 (2021).

    [159] X. Huang, Y. Lu, Z. Song, T. Xiu, M.E. Badding et al., Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO. J. Energy Chem. 39, 8–16 (2019).

    [160] E. Ramos, A. Browar, J. Roehling, J. Ye, CO2 laser sintering of garnet-type solid-state electrolytes. ACS Energy Lett. 7, 3392–3400 (2022).

    [161] K.A. Acord, A.D. Dupuy, U. Scipioni Bertoli, B. Zheng, W.C. West et al., Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes. J. Mater. Process. Technol. 288, 116827 (2021).

    [162] A. Ishii, H. Huang, Y. Meng, S. Mu, J. Gao et al., Chemically inert hydrocarbon-based slurries for rapid laser sintering of thin proton-conducting ceramics. Mater. Res. Bull. 143, 111446 (2021).

    [163] L. Ming, H. Yang, W. Zhang, X. Zeng, D. Xiong et al., Selective laser sintering of TiO2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. J. Mater. Chem. A 2, 4566–4573 (2014).

    [164] Y. Pang, Y. Cao, Y. Chu, M. Liu, K. Snyder et al., Additive manufacturing of batteries. Adv. Funct. Mater. 30, 1906244 (2020).

    [165] C. Zuo, S. Zha, M. Liu, M. Hatano, M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318–3320 (2006).

    [166] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3-δ. Science 326, 126 (2009).

    [167] A. Ishii, S. Mu, Y. Meng, H. Huang, J. Lei et al., Rapid laser processing of thin Sr-doped LaCrO3–δ interconnects for solid oxide fuel cells. Energy Technol. 8, 2000364 (2020).

    [168] M. Pagliaro, R. Ciriminna, G. Palmisano, Flexible solar cells. ChemSusChem 1, 880–891 (2008).

    [169] S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6, 1443–1464 (2013).

    [170] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energy Mater. Sol. Cells 94, 812–816 (2010).

    [171] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    [172] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011).

    [173] H. Wang, Y. Diao, Y. Lu, H. Yang, Q. Zhou et al., Energy storing bricks for stationary PEDOT supercapacitors. Nat. Commun. 11, 3882 (2020).

    [174] S.-J. Choi, S.-J. Kim, J.-S. Jang, J.-H. Lee, I.-D. Kim, Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826–5835 (2016).

    [175] J. Jang, B.G. Hyun, S. Ji, E. Cho, B.W. An et al., Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater 9, e432 (2017).

    [176] S.-J. Choi, S.-J. Kim, I.-D. Kim, Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, 315 (2016).

    [177] Illgen, R., Flachowsky, S., Herrmann, T., Feudel, T., Thron, D. et al.: In: 2009 10th International Conference on Ultimate Integration of Silicon (IEEE, 2009), pp. 157–160.

    [178] Borland, J.O.: 32nm node USJ implant & annealing options. In 2007 15th International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2007), pp. 181–189.

    [179] Colombeau, B., Yeong, S.H., Tan, D.X.M., Smith, A.J., Gwilliam, R.M. et al.: Ultra-shallow junction formation-physics and advanced technology. In: AIP Conference of Proceedings (AIP, 2008), pp. 11–18.

    [180] Y. Chen, K. Denis, P. Kazlas, P. Drzaic, 122: a conformable electronic ink display using a foil-based a-Si TFT array. SID Symp. Dig. Tech. Pap. 32, 157–159 (2001).

    [181] R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147 (1979).

    [182] Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C. et al.: Full copper wiring in a sub-0.25 μm CMOS ULSI technology. In: International Electron Devices Meeting. IEDM Technical Digest (IEEE, n.d.), pp. 773–776.

    [183] M.D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates. Chem. Mater. 24, 2501–2508 (2012).

    [184] S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    [185] L. Tan, Q. Zhou, H. Wang, R. Yao, Characteristics of micro LEDs with snowflake p-electrode and composite textured sidewalls. IEEE Photonics Technol. Lett. 31, 1705–1708 (2019).

    [186] P.-T. Liu, Y.-T. Chou, C.-Y. Su, H.-M. Chen, Using electroless plating Cu technology for TFT-LCD application. Surf. Coat. Technol. 205, 1497–1501 (2010).

    [187] M. Abbott, J. Cotter, Optical and electrical properties of laser texturing for high-efficiency solar cells. Prog. Photovolt. Res. Appl. 14, 225–235 (2006).

    [188] D. Canteli, I. Torres, S. Fernández, J.D. Santos, M. Morales et al., Photon-collection improvement from laser-textured AZO front-contact in thin-film solar cells. Appl. Surf. Sci. 463, 775–780 (2019).

    [189] Y. Zhang, G. Cai, Y. Gu, L. Ge, Y. Zheng et al., Modifying the electrode-electrolyte interface of anode supported solid oxide fuel cells (SOFCs) by laser-machining. Energy Convers. Manag. 171, 1030–1037 (2018).

    [190] M. Kedia, M. Rai, H. Phirke, C.A. Aranda, C. Das et al., Light makes right: laser polishing for surface modification of perovskite solar cells. ACS Energy Lett. 8, 2603–2610 (2023).

    [191] D. Kim, I.-W. Tcho, I.K. Jin, S.-J. Park, S.-B. Jeon et al., Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy 35, 379–386 (2017).

    [192] K.-W. Lim, M. Peddigari, C.H. Park, H.Y. Lee, Y. Min et al., A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 12, 666–674 (2019).

    [193] M.S. Kwak, K.W. Lim, H.Y. Lee, M. Peddigari, J. Jang et al., Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale 13, 8418–8424 (2021).

    [194] R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29, 1702211 (2017).

    [195] Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).

    [196] H. Zhu, Z. Zhang, Z. Zhang, J. Lu, K. Xu et al., Localized fabrication of flexible graphene-copper composites via a combined ultrafast laser irradiation and electrodeposition technique. J. Manuf. Process. 108, 395–407 (2023).

    [197] J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023).

    [198] M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    [199] Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9, 5868–5875 (2015).

    [200] Y. Yuan, L. Jiang, X. Li, P. Zuo, C. Xu et al., Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 11, 6185 (2020).

    [201] F. Zhang, E. Alhajji, Y. Lei, N. Kurra, H.N. Alshareef, Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv. Energy Mater. 8, 1800353 (2018).

    [202] W. Ma, S. Chen, S. Yang, W. Chen, W. Weng et al., Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017).

    [203] X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu et al., Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Funct. Mater. 28, 1707247 (2018).

    [204] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide: MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010).

    [205] H. Zhu, C. Wang, S. Mao, Z. Zhang, D. Zhao et al., Localized and efficient machining of germanium based on the auto-coupling between picosecond laser irradiation and electrochemical dissolution: Mechanism validation and surface characterization. J. Manuf. Process. 77, 665–677 (2022).

    [206] H. Zhu, M. Zhang, W. Ren, V. Saetang, J. Lu et al., Laser-induced localized and maskless electrodeposition of micro-copper structure on silicon surface: Simulation and experimental study. Opt. Laser Technol. 170, 110315 (2024).

    [207] Q. Wu, Y. Li, Y. Yang, Y. Zhao, A photolithography process design for 5 nm logic process flow. J. Microelectron. Manuf. 2, 1–8 (2019).

    [208] G. Tallents, E. Wagenaars, G. Pert, Lithography at EUV wavelengths. Nat. Photonics 4, 809–811 (2010).

    [209] K. Kim, H.-E. Kim, I.-H. Lee, J.-S. Kim, J.-S. Chun et al., in Proceedings of SPIE 2440, Optical/Laser Microlithography VIII, ed. by T. A. Brunner (1995), pp. 76–87.

    [210] J. Yun, M. Yang, B. Kang, Laser sweeping lithography: parallel bottom-up growth sintering of a nanoseed–organometallic hybrid suspension for ecofriendly mass production of electronics. ACS Sustain. Chem. Eng. 6, 4940–4947 (2018).

    [211] Y.S. Rim, H. Chen, Y. Liu, S.H. Bae, H.J. Kim et al., Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano 8, 9680–9686 (2014).

    [212] I. Bretos, R. Jiménez, A. Wu, A.I. Kingon, P.M. Vilarinho et al., Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 26, 1405–1409 (2014).

    [213] L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027–11032 (2009).

    [214] S. Yoo, S.Y. Jeong, J.-W. Lee, J.H. Park, D.-W. Kim et al., Heavily nitrogen doped chemically exfoliated graphene by flash heating. Carbon 144, 675–683 (2019).

    [215] J. Kim, M. Kim, H. Jung, J. Park, Y. Lee, Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices. Nano Energy 106, 108067 (2023).

    [216] D.-H. Kim, J.-H. Cha, S. Chong, S.-H. Cho, H. Shin et al., Flash-thermal shock synthesis of single atoms in ambient air. ACS Nano 17, 23347–23358 (2023).

    [217] L.T. Duy, R.B. Ali, Q.A. Sial, H. Seo, Green synthesis of carbon and cobalt oxide composites by 1–Watt laser sintering for flexible supercapacitors. Ceram. Int. 49, 13131–13139 (2023).

    [218] T.-F. Hung, Z.-W. Yin, S.B. Betzler, W. Zheng, J. Yang et al., Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019).

    [219] J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porche et al., One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interf. 7, 6637 (2015).

    [220] J. Zhao, Y. Wang, Z. Zhang, Z. Zhu, S. Zeng et al., Biomineralization-inspired synthesis of hybrid COF nanosheets toward efficient desalination membranes. Small 20, e2310566 (2024).

    [221] W.O. Silva, V. Costa Bassetto, D. Baster, M. Mensi, E. Oveisi et al., Oxidative print light synthesis thin film deposition of prussian blue. ACS Appl. Electron. Mater. 2, 927 (2020).

    [222] F. Wang, Z. Guo, Z. Wang, H. Zhu, G. Zhao et al., Laser-induced transient self-organization of TiNx nano-filament percolated networks for high performance surface-mountable filter capacitors. Adv. Mater. 35, e2210038 (2023).

    [223] D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017).

    [224] H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2021).

    [225] L.J. Wang, M.F. El-Kady, S. Dubin, J.Y. Hwang, Y. Shao et al., Flash converted graphene for ultra-high power supercapacitors. Adv. Energy Mater. 5, 1500786 (2015).

    [226] H.S. Lee, J. Chung, G.-T. Hwang, C.K. Jeong, Y. Jung et al., Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 24, 6914–6921 (2014).

    [227] K. Mizutari, M. Fujioka, M. Hosoya, N. Bramhall, H.J. Okano et al., Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77, 58 (2013).

    Jung Hwan Park, Srinivas Pattipaka, Geon-Tae Hwang, Minok Park, Yu Mi Woo, Young Bin Kim, Han Eol Lee, Chang Kyu Jeong, Tiandong Zhang, Yuho Min, Kwi-Il Park, Keon Jae Lee, Jungho Ryu. Light–Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications[J]. Nano-Micro Letters, 2024, 16(1): 276
    Download Citation