• Optoelectronics Letters
  • Vol. 18, Issue 10, 583 (2022)
Leshu LIU, Ning LIU, Jianfa ZHANG, Zhihong ZHU, and Ken LIU*
Author Affiliations
  • College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.1007/s11801-022-2049-y Cite this Article
    LIU Leshu, LIU Ning, ZHANG Jianfa, ZHU Zhihong, LIU Ken. High performance electro-optic modulator based on thin-film lithium niobate[J]. Optoelectronics Letters, 2022, 18(10): 583 Copy Citation Text show less
    References

    [1] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725):101-104.

    [2] WANG C, ZHANG M, STREN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics express, 2018, 26(2):1547-1555.

    [3] XU M, HE M, ZHU Y, et al. Integrated thin film lithium niobate Fabry-Perot modulator[Invited][J]. Chinese optics letters, 2021, 19(6):060003.

    [4] HE M, XU M, REN Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond[J]. Nature photonics, 2019, 13(5):359-364.

    [5] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 2019, 6(3): 380-384.

    [6] KHAREL P, REIMER C, LUKE K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3):357-363.

    [7] XU H, LI X, XIAO X, et al. High-speed silicon modulator with band equalization[J]. Optics letters, 2014, 39(16):4839-4842.

    [8] CHMIELAK B, WALDOW M, MATHEISEN C, et al. Pockels effect based fully integrated, strained silicon electro-optic modulator[J]. Optics express, 2011, 19(18):17212-17219.

    [9] BHASKER P, NORMAN J, BOWERS J, et al. Intensity and phase modulators at 1.55 μm in GaAs/AlGaAs layers directly grown on silicon[J]. Journal of lightwave technology, 2018, 36(158):4205-4210.

    [10] WANG S, WANG L, ZHAO L, et al. Compact In-GaAsP/InP asymmetric Mach-Zehnder coupled square ring modulator[J]. IEEE photonics technology letters, 2017, 29(16):1312-1315.

    [11] MIURA H, QIU F, SPRING A M, et al. High thermal stability 40 GHz electro-optic polymer modulators[J]. Optics express, 2017, 25(23):28643-28649.

    [12] QIU F, HAN Y. Electro-optic polymer ring resonator modulators[Invited][J]. Chinese optics letters, 2021, 19(4):041301.

    [13] QIAN G, NIU B, ZHAO W, et al. CL-TWE Mach-Zehnder electro-optic modulator based on InP-MQW optical waveguides[J]. Chinese optics letters, 2019, 17(6):061301.

    [14] OGISO Y, OZAKI J, UEDA Y, et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure[J]. Journal of lightwave technology, 2017, 35(8):1450-1455.

    [15] LIU M, YIN X, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349):64-67.

    [16] PHARE C T, LEE Y D, CARDENAS J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature photonics, 2015, 9(8):511-514.

    [17] LIANG Z X, XU C P, ZHU A J, et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip[J]. Optik, 2020, 210:164503.

    [18] TIBALDI A, GHOMASHI M, BERTAZZI F, et al. Plasmonic-organic hybrid electro/optic Mach-Zehnder modulators: from waveguide to multiphysics modal-FDTD modeling[J]. Optics express, 2020, 28(20): 29253-29271.

    [19] QI Y, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6):1287-1320.

    [20] THIELE F, BRUCH F V, QUIRING V, et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides[J]. Optics express, 2020, 28(20):28961-28968.

    [21] PALIWAL A, SHARMA A, GUO R, et al. Electro-optic (EO) effect in proton-exchanged lithium niobate: towards EO modulator[J]. Applied physics B, 2019, 125(7):115.

    [22] ZHU D, SHAO L, YU M, et al. Integrated photonics on thin-film lithium niobate[J]. Advanced optics photonics, 2021, 13(2):242-352.

    [23] REN T, ZHANG M, WANG C, et al. An integrated low-voltage broadband lithium niobate phase modulator[ J]. IEEE photonics technology letters, 2019, 31(11):: 889-892.

    [24] BAHADORI M, GODDARD L L, GONG S. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators[J]. Optics express, 2020, 28(9):13731-13749.

    [25] HONARDOOST A, JUNEGHANI F A, SAFIAN R, et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators[J]. Optics express, 2019, 27(5):6495-6501.

    [26] LIU N, ZHANG J, ZHU Z, et al. Efficient coupling between an integrated photonic waveguide and an optical fiber[J]. Optics express, 2021, 29(17):27396-27403.

    LIU Leshu, LIU Ning, ZHANG Jianfa, ZHU Zhihong, LIU Ken. High performance electro-optic modulator based on thin-film lithium niobate[J]. Optoelectronics Letters, 2022, 18(10): 583
    Download Citation