[1] BERTHOU H, JORGENSEN C K. Optical-fiber temperature sensor based on upconversion-excited fluorescence[J]. Opt Lett, 1990, 15(19):1100-1102.
[2] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062.
[3] JOHN. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(23): 2486-2489.
[4] NIE J, GAO H, LI X, et al. Upconversion luminescence properties of different fluoride matrix materials NaREF4 (RE: Gd, Lu, Y) doped with Er3+/Yb3+[J]. J Lumin, 2018, 204: 333-340.
[5] FAN X, HUANG W, YING W, et al. High efficient upconversion luminescence of NaGdF4: Yb3+/Er3+nanoparticle: first-principles calculation, dual-wavelength stimuli and logic gate application[J].Mater Technol, 2021, 9: 1995641.
[6] WANG F, LIU X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J].J Am Chem Soc, 2008, 130(17): 5642-5643.
[7] CHEN Z, DONG G, GAO H, et al. Two-/multi-wavelength light excitation effects in optical materials: From fundamentals to applications[J]. Prog Mate Sci, 2019, 105(AUG.): 100568.1-.57.
[8] ZHOU J, DENG J, ZHU H, et al. Up-conversion luminescence in LaF3:Ho3+ via two-wavelength excitation for use in solar cells[J]. J Mater Chem C, 2013, 1(48): 8023-8027.
[9] CHEN Z, WANG W, KANG S, et al. Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation[J]. Fluorine Compd, 2018, 6(4): 1700787.
[10] SHANG X, CHEN P, CHENG W, et al. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er3+:NaYF4 nanocrystals under excitation of two near infrared femtosecond lasers[J]. J Appl Phys, 2014, 116(6): 1185.
[11] CHEN Z, WU U B, JIA H, et al. Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation[J]. J Phys Chem C, 2015, 119(42): 24056-24061.
[12] CHEN Zhi, ZHANG Xiaowen, ZENG Shengfeng, et al. Highly efficient up-conversion luminescence in BaCl2:Er3+ phosphors via simultaneous multiwavelength excitation[J]. Appl Phys Express, 2015,8(3): 032301.
[13] YING W, NIE J, FAN X, et al. Dual-wavelength responsive broad range multicolor upconversion luminescence for high-capacity photonic barcodes[J]. Adv Opt Mater, 2021.9(15): 2100197.
[14] NIE J, YING W, GU J, et al. Upconversion logic gates based on dual-wavelength excitation[J]. J Phys D-Appl Phys, 2020, 53(28):285103.
[15] FAN X, YING W, XU S, et al. Multiple logic gates system based on dual-wavelength triggered enhancing upconversion luminescence of Gd2(MoO4)3:Yb3+/Er3+[J]. J Am Ceram Soc, 2021, 105(1): 402-411.
[16] CHEN B, LIU Y, XIAO Y, et al. Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4:Ho nanostructure for direct visualization of electromagnetic hotspots[J]. J Phys Chem Lett,2016, 7(23): 4916-4921.
[17] NIE J, GU J, YING W, et al. Excitation-power responsive upconversion logic operations based on the multiphoton process of a praseodymium ion[J]. J Mater Chem C, 2020, 8(9): 2970-2974.
[18] MENG Z, WU S, ZHANG S. External current-controlled dynamic display by integrating upconversion micro-disks with power density-dependent color into NIR luminescent diodes[J]. J Mater Chem C, 2018, 6(48): 13101-13107.
[19] MUKHUTI K, ADUSUMALLI V N K B, KOPPISETTI H V S R M, et al. Highly sensitive upconverting nanoplatform for luminescent thermometry from ambient to cryogenic temperature[J]. Chem Phys Chem, 2020, 21(15): 1731-1736.
[20] SAIDI K, CHAABANI W, DAMMAK M. Highly sensitive optical temperature sensing based on pump-power-dependent upconversion luminescence in LiZnPO4:Yb3+-Er3+/Ho3+ phosphors[J]. Rsc Adv, 2021,11(49): 30926-30936.
[21] NIE J, YING W, FAN X, et al. Cryogenic dependent energy manipulation in nonthermally coupled levels for multicolor upconversion luminescence[J]. J Phys Chem C, 2021, 125(34):19040-19047.
[22] LI W, HU L, CHEN W, et al. The effect of temperature on green and red upconversion emissions of LiYF4:20Yb3+, 1Ho3+ and its application for temperature sensing[J]. J Alloys Compd, 2021, 866:158813.
[23] FAN X, NIE J, YING W, et al. Cryogenic enabled multicolor upconversion luminescence of KLa(MoO4)2:Yb3+/Ho3+ for dual-mode anti-counterfeiting[J]. Dalton Transact, 2021, 50(35): 12234-12241.
[24] DU P, LUO L, YU J S.Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics[J].J Alloys Compd, 2015, 632: 73-77.
[25] CHAI X, LI J, WANG X, et al. Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios[J]. RSC Adv, 2017,7(64): 40046-40052.
[26] YAO H, SHEN H, TANG Q, et al. Temperature-dependence of efficient up-conversion luminescence in NaY(WO4)2 nanophosphor doped with Er3+ for cryogenic temperature sensor[J]. Mater Chem Phys,2018, 219: 361-367.
[27] SHANG Y, HAN Q, HAO S, et al. Dual-mode upconversion nanoprobe enables broad-range thermometry from cryogenic to room temperature[J]. ACS Appl Mater Interfaces, 2019, 11(45):42455-42461.
[28] LIU Z, DENG H, CHEN D. Temperature dependent upconversion properties of Yb3+:Ho3+ co-doped Gd2O3 nanoparticles prepared by pulsed laser ablation in water[J]. Ceram Int, 2019, 45(10):13235-132341.
[29] PANDEY A, RAI V K. Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor[J]. Dalton Transact, 2013, 42(30): 11005-110011.
[30] ZHOU S, DENG K, WEI X, et al. Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing[J]. Opt Commun, 2013, 291:138-142.
[31] LUO Z, ZHANG L, ZENG R, et al. Near-infrared light-excited core-core-shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay[J]. Anal Chem, 2018, 90(15): 9568-9575.
[32] RANJAN S K, SONI A K, RAI V K. Frequency upconversion and fluorescence intensity ratio method in Yb3+-ion-sensitized Gd2O3:Er3+-Eu3+ phosphors for display and temperature sensing[J].Methods Appl Fluores, 2017, 5(3): 035004.
[33] CHEN D, XIANG W, LIANG X, et al. Advances in transparent glass-ceramic phosphors for white light-emitting diodes-A review[J]. J Eur Ceram Soc, 2015, 35(3): 859-869.
[34] ZHONG J, CHEN D, PENG Y, et al. A review on nanostructured glass ceramics for promising application in optical thermometry[J]. J Alloys Compd, 2018, 763: 34-48.
[35] STOOKEY S D. Catalyzed crystallization of glass in theory and practice[J]. Ind Eng Chem, 1959, 51(7): 805-808.
[36] ALI M A, REN J, LIU X, et al. Effect of ligand field symmetry on upconversion luminescence in heat-treated LaBGeO5:Yb3+,Er3+ glass[J]. J Am Ceram Soc, 2018, 101(9): 4387-4396.
[37] LI L, WANG W, CHEN H, et al. Optical thermometry based on upconversion luminescence of Ba3Gd2F12:Yb3+/Er3+ nanocrystals embedded in glass ceramics[J]. J Non-Cryst Solids, 2021, 573(38):121142.
[38] LI X Y, CHEN Y L, YANG T, et al. Dual-phase glass ceramics for dual-modal optical thermometry through a spatial isolation strategy[J].Dalton Trans, 2021, 50(44): 16223-16232.
[39] HU F, CHEN W, JIANG Y, et al.Tm3+-doped Na0.5-xYb0.5+xF2+2x self-crystallization glass ceramics: Microstructure and optical thermometry properties[J]. J Lumin, 2019, 214: 116558-116558.
[40] PENG Y, CHEN D, ZHONG J, et al. Lanthanide-doped KGd3F10 nanocrystals embedded glass ceramics: Self-crystallization, optical properties and temperature sensing[J]. J Alloys Compd, 2018, 767:682-689.
[41] LI X, YUAN S, HU F, et al. Near-infrared to short-wavelength upconversion temperature sensing in transparent bulk glass ceramics containing hexagonal NaGdF4:Yb3+/Ho3+ nanocrystals[J]. Opt Mater Express, 2017, 7(8): 3023-3033.
[42] WAN Z, CHEN D, ZHOU Y, et al. Eu3+ and Er3+ doped NaLu1-xYbxF4(x=0 similar to 1) solid-solution self-crystallization nano-glassceramics:Microstructure and optical spectroscopy[J]. J Eur Ceram Soc,2015, 35(13): 3673-3679.
[43] CHEN D, WAN Z, ZHOU Y, et al. Bulk glass ceramics containing Yb3+/Er3+:beta-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior[J]. J Alloys Compd, 2015, 638: 21-28.
[44] CHEN D, ZHOU Y, WAN Z, et al. Enhanced upconversion luminescence in phase-separation-controlled crystallization glass ceramics containing Yb/Er(Tm): NaLuF4 nanocrystals[J]. J Eur Ceram Soc, 2015, 35(7): 2129-2137.
[45] HU F, CAO J, WEI X, et al. Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion[J]. J Mater Chem C, 2016, 4(42): 9976-9985.
[46] CAO J, CHEN W, XU D, et al. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics[J]. J Lumin, 2017, 194: 219-224.
[47] LI X, QIU L, CHEN Y, et al. LiYF4-nanocrystal-embedded glass ceramics for upconversion: glass crystallization, optical thermometry and spectral conversion[J]. RSC Adv, 2021, 11(4): 2066-2073.
[48] LI X M, CAO J K, WEI Y L, et al. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics[J]. J Am Ceram Soc, 2016, 98(12): 3824-3830.
[49] YU H, LI S, QI Y, et al. Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix[J]. J Lumin, 2018, 194: 433-439.
[50] CAI J, WEI X, HU F, et al. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals[J]. Ceram Int, 2016, 42(12): 13990-13995.
[51] CAO J K, LI X M, WANG Z X, et al. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ Sens. Actuator B-Chem, 2016, 224: 507-513.
[52] CAO Jiangkun, HU Fangfang, CHEN Liping, et al. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics[J]. J Alloys Compd, 2017, 693: 326-331.
[53] LI X, CAO J, HU F, et al. Transparent Na5Gd9F32:Er3+ glass-ceramics:enhanced up-conversion luminescence and applications in optical temperature sensors[J]. RSC Adv, 2017, 7(56): 35147-35153.
[54] HU F, CAO J, WEI X, et al. Self-crystallized novel transparent Na5Yb9F32 : Er3+ glass-ceramics for optical thermometry and spectral conversion[J]. J Alloys Compd, 2017, 722: 669-675.
[55] WU T, ZHAO S, LEI R, et al. Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics[J].Mater Res Express, 2018, 5(2): 025201.
[56] CHEN D, LIU S, LI X, et al. Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+ /Tm3+:YF3 nanocrystals embedded glass ceramic[J]. J Eur Ceram Soc, 2017, 37(15): 4939-4945.
[57] CHEN D, SHEN L, LI X, et al. Gd-based oxyfluoride glass ceramics:Phase transformation, optical spectroscopy and upconverting temperature sensing[J]. J Eur Ceram Soc, 2017, 37(13): 4083-4094.
[58] CHEN D, LIU S, WAN Z, et al. A highly sensitive upconverting nano-glass-ceramic-based optical thermometer[J]. J Alloys Compd,2016, 672: 380-385.
[59] CHEN Y, LIU X, XU J, et al. Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior[J]. J Mater Sci, 2019, 30(1): 778-785.
[60] WADHWA A, AWASTHI P, REN K, et al. Selective enrichment of Ln3+ (Ln=Yb; Er) and Cr3+ into SrF2 and ZnAl2O4 nanocrystals precipitated in fluorosilicate glass-ceramics: A dual mode optical temperature sensing study[J]. J Non-Cryst Solids, 2021, 552(1):120395.
[61] ZHU X, FENG W, CHANG J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nat Commun, 2016, 7: 10437.