• Chinese Journal of Ship Research
  • Vol. 19, Issue 5, 188 (2024)
Feng MA1,2, Zihui SHI1,2, Jie SUN3, Chen CHEN3,4..., Xianbin MAO5 and Xinping YAN2|Show fewer author(s)
Author Affiliations
  • 1School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430063, China
  • 2Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
  • 3Nanjing Smart Water Transportation Technology Co., Ltd, Nanjing 210028, China
  • 4School of Computer Science and Technology, Wuhan Institute of Technology, Wuhan 430205, China
  • 5Zhoushan Haihua Passenger Transport Co., Ltd, Zhoushan 316111, China
  • show less
    DOI: 10.19693/j.issn.1673-3185.03389 Cite this Article
    Feng MA, Zihui SHI, Jie SUN, Chen CHEN, Xianbin MAO, Xinping YAN. Lightweight and robust ship detection method driven by self-attention mechanism[J]. Chinese Journal of Ship Research, 2024, 19(5): 188 Copy Citation Text show less
    [in Chinese]
    Fig. 1. [in Chinese]
    [in Chinese]
    Fig. 2. [in Chinese]
    [in Chinese]
    Fig. 3. [in Chinese]
    [in Chinese]
    Fig. 4. [in Chinese]
    [in Chinese]
    Fig. 5. [in Chinese]
    [in Chinese]
    Fig. 6. [in Chinese]
    [in Chinese]
    Fig. 7. [in Chinese]
    [in Chinese]
    Fig. 8. [in Chinese]
    [in Chinese]
    Fig. 9. [in Chinese]
    参数数值
    学习率0.01
    余弦退火超参数0.1
    动量0.937
    权重衰退0.000 5
    批量大小16
    输入尺寸640
    优化器SGD
    Table 1. Initial parameters of the model
    算法模型平均精度平均召回率mAP@0.5mAP@0.5:0.95参数量
    YOLOv30.8770.9010.9150.61561 513 575
    YOLOv50.9190.8680.9160.61846 124 433
    YOLOv70.9050.8690.9260.62036 497 954
    Faster R-CNN0.5380.3310.5330.268138 357 544
    SSD0.6430.5580.5210.28148 306 395
    ShipDet0.9210.9030.9290.62935 366 310
    Table 2. Comparison results of evaluation indicators for algorithm models
    算法模型mAP@0.5:0.95
    普通船集装箱船拖轮客船全类
    YOLOv30.5230.6020.7150.620.615
    YOLOv50.5270.6000.7180.6270.618
    YOLOv70.5080.6310.7190.6210.620
    Faster R-CNN0.1290.4030.2550.2850.268
    SSD0.1430.3990.2400.3420.281
    ShipDet0.5460.6180.7190.6230.629
    Table 3. Experimental results of different types of ships
    算法模型平均精度(mAP@0.5:0.95)平均召回率( mAP@0.5:0.95)
    小尺寸船舶中尺寸船舶大尺寸船舶小尺寸船舶中尺寸船舶大尺寸船舶
    YOLOv30.3890.6640.7630.4740.7290.806
    YOLOv50.4100.6710.7850.4830.7290.827
    YOLOv70.4210.6830.7700.5010.7540.813
    Faster R-CNN0.0040.2520.5510.0090.3780.600
    SSD0.1420.3550.5930.1020.4110.616
    ShipDet0.4570.6770.7670.5030.7390.808
    Table 4. Comparison results of different models on different scales
    模型SIoU损失函数STR模块平均精度平均召回率mAP@0.5mAP@0.5:0.95
    YOLOv5L××0.9030.8680.9160.618
    SD-NET×0.8980.9020.9190.618
    ×0.9110.8930.9180.621
    0.9210.9030.9290.629
    Table 5. Results of ablation experiments
    算法模型平均精度平均召回率mAP@0.5mAP@0.5:0.95
    YOLOv30.9800.9910.9930.829
    YOLOv50.9850.9760.9230.832
    YOLOv70.9760.9770.9910.836
    Faster R-CNN0.9370.9590.9000.786
    SSD0.8870.8900.8920.564
    ShipDet0.9900.9910.9930.899
    Table 6. Detection results based on Seaships dataset with different algorithms
    Feng MA, Zihui SHI, Jie SUN, Chen CHEN, Xianbin MAO, Xinping YAN. Lightweight and robust ship detection method driven by self-attention mechanism[J]. Chinese Journal of Ship Research, 2024, 19(5): 188
    Download Citation