[1] Sun Y J, Chen D S, Liang Z Q.Two-dimensional MXenes for energy storage and conversion applications [J].Materials Today Energy,2017,5(22):22-36.
[2] Naguib M, Mochalin V N, Barsoum M W, et al. A new family of two-dimensional materials[J].Advanced Materials,2014,26:992.
[3] Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J].ACS Nano,2012,6:1322.
[4] Halim J, Kota S, Lukatskaya M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene) [J].Advanced Functional Materials,2016,26:3118.
[5] Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) [J].Nanoscale,2016,8:11385.
[6] Tan T L, Jin H M, Sullivan M B, et al. High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures[J].ACS Nano,2017,11:4407.
[7] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J].Nature Reviews Materials,2017,2:16098.
[8] Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors[J].Advanced Energy Materials,2018,7:1703043.
[9] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J].Nature,2014,516:78-8.
[10] Huang H C, Chu X, Su H, et al. Massively manufactured paper-based all-solid-stateflexible microsupercapacitors with sprayable MXene conductive inks[J].Journal of Power Sources,2019,415:1-7.
[11] Ng V M H, Huang H, Zhou K, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites:synthesis and applications[J].Journal of Materials Chemistry,2017,5(7):3039-3068.
[12] Hu H B, Bai Z M, Niu B, et al. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics[J].Journal of Materials Chemistry,2018,6(30):14876- 14884.
[13] Zhang C F (John), McKeon L, Kremer M P. Additive-free MXene inks and direct printing of micro- supercapacitors[J].Nat Communications,2019,10(1):1795.
[14] Zhang C F (John), Kremer M P Kremer, Seral-Ascaso A, et al. Stamping of flexible,coplanar micro- supercapacitors using MXene inks[J].Advanced Functional Materials,2018,28(9):1705506.
[15] Peng Y Y, Akuzum B, Kurra N. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage[J].Energy Environmental Science,2016,9:2847-2854.
[16] Zhu M S, Huang Y, Deng Q H. Highly flexible,freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene[J].Advanced Energy Materials,2016,6(21):1600969.
[17] Shen B S,Wang H,Wu L J. All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide[J].Chinese Chemical Letters,2016,27 (10):1586-1591.
[18] Jiang Q,Wu C S,Wang Z J,et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit[J].Nano Energy,2018,45:266-272.
[19] Zhang L, Zhao G Y, Wang Y. Polyaniline nanowire electrodes with high capacitance synthesized by a simple approach[J].Materials Science Engineering C,2013,33 (1):209-212.
[20] Luo J J, Fan F R, Jiang T, et al. Integration of microsupercapacitors with triboelectric nanogenerators for a flexible self-charging power unit[J].Nano Research,2015,8 (12):3934-3943.
[21] Lu X H, Yu M H, Wang G M, Flexible solid-state supercapacitors:design,fabrication and applications [J].Energy Environmental Science,2014,7:2160-2181.
[22] Gu S S, Lou Z, Li L D, et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications[J].Nano Research,2016,9(2):424-434.