[1] Chen G, Agren H, Ohulchanskyy T Y, et al. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications[J]. Chemical Society Reviews, 2015, 44(6): 1680-1713.
[2] Zhu Y, Zhao S, Zhou B, et al. Enhancing upconversion luminescence of LiYF4∶Yb,Er nanocrystals by Cd2+ doping and core-shell structure[J]. The Journal of Physical Chemistry C, 2017, 121(34): 18909-18916.
[3] Qiang Q, Du S, Ma X, et al. A temperature sensor based on the enhanced upconversion luminescence of Li+ doped NaLuF4∶Yb3+,Tm3+/Er3+ nano/microcrystals[J]. Dalton Transactions, 2018, 47(26): 8656-8662.
[4] Wang J, He N, Zhu Y, et al. Highly-luminescent Eu, Sm, Mn-doped CaS up/down conversion nano-particles: application to ultra-sensitive latent fingerprint detection and in vivo bioimaging[J]. Chemical Communications, 2018, 54(6): 591-594.
[5] Chen G, Qiu H, Prasad P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 2014, 114(10): 5161-5214.
[6] Liu Q, Sun Y, Yang T, et al. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo[J]. Journal of the American Chemical Society, 2011, 133(43): 17122-17125.
[7] Zeng S, Yi Z, Lu W, et al. Simultaneous realization of phase/size manipulation, upconversion luminescence enhancement, and blood vessel imaging in multifunctional nanoprobes through transition metal Mn2+ doping[J]. Advanced Functional Materials, 2014, 24(26): 4051-4059.
[8] Zeng S, Xiao J, Yang Q, et al. Bi-functional NaLuF4∶Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties[J]. Journal of Materials Chemistry, 2012, 22(19): 9870-9874.
[9] Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia, 2013, 61(7): 2628-2638.
[10] Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides[J]. Acta Crystallographica Section A, 1976(32): 751-767.
[11] Tian Q, Tao K, Li W, et al. Hot-injection approach for two-stage formed hexagonal NaYF4∶Yb,Er nanocrystals[J]. The Journal of Physical Chemistry C, 2011, 115(46): 22886-22892.
[12] Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-7630.
[13] Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33): 11443-11450.
[14] Ma X, Lv Y, Xu J, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493.
[15] Huang H W, Pan Y, Yu C, et al. First-principles investigation of U doping in ZrO2[J]. Journal of Alloys and Compounds, 2014, 590: 21-26.
[16] Song L, Duan Y, Zhang Y, et al. Promoting defect formation and microwave loss properties in δ-MnO2 via Co doping: a first-principles study[J]. Computational Materials Science, 2017, 138: 288-294.
[17] Miao Y, Wang H, Li H, et al. The GGA+U method studied the effects of Cu doping on the formation energy, electronic and optical properties of V-doped ZnO[J]. Optical and Quantum Electronics, 2017, 49(9): 286.
[18] Liu C, Gao Z, Zeng J, et al. Magnetic/upconversion fluorescent NaGdF4∶Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumorsin vivo[J]. ACS Nano, 2013, 7(8): 7227-7240.
[19] Liu D, Xu X, Du Y, et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals[J]. Nature Communications, 2016, 7: 10254.
[20] Gaur A, Nitin Nair N, Shrivastava B D, et al. Study of distorted octahedral structure in 3d transition metal complexes using XAFS[J]. Chemical Physics Letters, 2018, 692: 382-387.
[21] Meruga J M, Cross W M, May P S, et al. Security printing of covert quick response codes using upconverting nanoparticle inks[J]. Nanotechnology, 2012, 23(39520139).
[22] Nunes B, Carvalho F, Guilhermino L. Acute toxicity of widely used pharmaceuticals in aquatic species: gambusia holbrooki, artemia parthenogenetica and tetraselmis chuii[J]. Ecotoxicology and Environmental Safety, 2005, 61(3): 413-419.
[23] Boillot C, Perrodin Y. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the toxicity index model and isoblogram representation[J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 252-259.
[24] Chang H J, Lee J H. Emulsification and oxidation stabilities of DAG-rich algae oil-in-water emulsions prepared with the selected emulsifiers[J]. Journal of the Science of Food and Agriculture, 2019, 100(1): 287-294.
[25] Manchun S, Dass C R, Sriamornsak P. Designing nanoemulsion templates for fabrication of dextrin nanoparticles via emulsion cross-linking technique[J]. Carbohydrate Polymers, 2014, 101: 650-655.