• Chinese Optics Letters
  • Vol. 21, Issue 6, 061902 (2023)
Miao Xue1, Xiongshuo Yan1, Jiangwei Wu1, Rui Ge1, Tingge Yuan1, Yuping Chen1、*, and Xianfeng Chen1、2、3
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.3788/COL202321.061902 Cite this Article Set citation alerts
    Miao Xue, Xiongshuo Yan, Jiangwei Wu, Rui Ge, Tingge Yuan, Yuping Chen, Xianfeng Chen. On-chip ultraviolet second-harmonic generation in lithium-tantalate thin film microdisk[J]. Chinese Optics Letters, 2023, 21(6): 061902 Copy Citation Text show less
    References

    [1] N. Savage. Ultraviolet lasers. Nat. Photonics, 1, 83(2007).

    [2] S. Tzortzakis, D. Anglos, D. Gray. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. Opt. Lett., 31, 1139(2006).

    [3] M. G. Roelofs, A. Suna, W. Bindloss, J. D. Bierlein. Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy. J. Appl. Phys., 76, 4999(1994).

    [4] K. Kintaka, M. Fujimura, T. Suhara, H. Nishihara. High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain- inverted gratings fabricated by applying voltage. J. Light. Technol., 14, 462(1996).

    [5] B. Mu, X. Wu, Y. Niu, Y. Chen, X. Cai, Y. Gong, Z. Xie, X. Hu, S. Zhu. Locally periodically poled LNOI ridge waveguide for second harmonic generation [Invited]. Chin. Opt. Lett., 19, 060007(2021).

    [6] K. Mizuuchi, K. Yamamoto, H. Sato. Domain inversion in LiTaO3 using proton exchange followed by heat treatment. J. Appl. Phys., 75, 1311(1994).

    [7] K. Mizuuchi, K. Yamamoto. Harmonic blue light generation in bulk periodically poled LiTaO3. Appl. Phys. Lett., 66, 2943(1995).

    [8] K. Mizuuchi, K. Yamamoto. Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3. Opt. Lett., 21, 107(1996).

    [9] S. V. Tovstonog, S. Kurimura, K. Kitamura. High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate. Appl. Phys. Lett., 90, 051115(2007).

    [10] Z. D. Gao, S. N. Zhu, S.-Y. Tu, A. H. Kung. Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate. Appl. Phys. Lett., 89, 181101(2006).

    [11] P. Dittrich, B. Koziarska-Glinka, G. Montemezzani, P. Günter, S. Takekawa, K. Kitamura, Y. Furukawa. Deep-ultraviolet interband photorefraction in lithium tantalate. J. Opt. Soc. Am. B, 21, 632(2004).

    [12] J. Liu, F. Bo, L. Chang, C.-H. Dong, X. Ou, B. Regan, X. Shen, Q. Song, B. Yao, W. Zhang, C.-L. Zou, Y.-F. Xiao. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech., 65, 104201(2022).

    [13] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [14] Y. Jia, J. Wu, X. Sun, X. Yan, R. Xie, L. Wang, Y. Chen, F. Chen. Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev., 16, 2200059(2022).

    [15] Y. Chen. Photonic integration on rare earth ion-doped thin-film lithium niobate. Sci. China Phys. Mech., 65, 294231(2022).

    [16] J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech., 58, 1(2015).

    [17] Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech., 61, 114211(2018).

    [18] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531(2017).

    [19] S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, X. Chen. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett., 44, 1456(2019).

    [20] J. Lin, S. Farajollahi, Z. Fang, N. Yao, R. Gao, J. Guan, L. Deng, T. Lu, M. Wang, H. Zhang, W. Fang, L. Qiao, Y. Cheng. “Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photonics, 4, 036001(2022).

    [21] R. Ge, X. Yan, Y. Chen, X. Chen. Broadband and lossless lithium niobate valley photonic crystal waveguide. Chin. Opt. Lett., 19, 060014(2021).

    [22] R. Ge, X. Yan, Z. Liang, H. Li, J. Wu, X. Liu, Y. Chen, X. Chen. Large quality factor enhancement based on cascaded uniform lithium niobate bichromatic photonic crystal cavities. Opt. Lett., 48, 113(2023).

    [23] J.-P. Meyn, M. M. Fejer. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt. Lett., 22, 1214(1997).

    [24] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [25] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072(2015).

    [26] S. Matsumoto, E. J. Lim, H. M. Hertz, M. M. Fejer. Quasiphase-matched second harmonic generation of blue light in electrically periodically poled lithium tantalate waveguides. Electron. Lett., 27, 2040(1991).

    [27] K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, V. Gopalan. Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices. Ferroelectrics, 257, 235(2001).

    [28] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki. Surface acoustic wave opto-mechanical oscillator and frequency comb generator. Opt. Lett., 36, 3338(2011).

    [29] W. Xie, X. Chen, L. He, Y. Chen, Y. Xia. Theoretical study of quasi-phase-matching fourth harmonic generation in periodically poled lithium tantalate. Chin. Opt. Lett., 2, 664(2004).

    [30] X. Yan, Y. Liu, L. Ge, B. Zhu, J. Wu, Y. Chen, X. Chen. High optical damage threshold on-chip lithium tantalate microdisk resonator. Opt. Lett., 45, 4100(2020).

    [31] J. Imbrock, S. Wevering, K. Buse, E. Krätzig. Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses. J. Opt. Soc. Am. B, 16, 1392(1999).

    [32] D. A. Roberts. Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quantum Electron., 28, 2057(1992).

    [33] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).

    [34] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [35] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [36] R. Zhuang, J. He, Y. Qi, Y. Li. High-Q thin-film lithium niobate microrings fabricated with wet etching. Adv. Mater., 35, 2208113(2023).

    [37] K. Zhang, Z. Chen, H. Feng, W.-H. Wong, E. Y.-B. Pun, C. Wang. High-Q lithium niobate microring resonators using lift-off metallic masks [Invited]. Chin. Opt. Lett., 19, 060010(2021).

    [38] I. Breunig. Three-wave mixing in whispering gallery resonators. Laser Photonics Rev., 10, 569(2016).

    [39] Y. Dong, K. Wang, X. Jin. Package of a dual-tapered-fiber coupled microsphere resonator with high Q factor. Opt. Commun., 350, 230(2015).

    Data from CrossRef

    [1] Shirui Zhang, Weizhou Hou, Xin Tao, Minghao Guo, Yueqing Li, Peng Li. Second-Harmonic Generation of the Vortex Beams with Integer and Fractional Topological Charges. Photonics, 10, 867(2023).

    Miao Xue, Xiongshuo Yan, Jiangwei Wu, Rui Ge, Tingge Yuan, Yuping Chen, Xianfeng Chen. On-chip ultraviolet second-harmonic generation in lithium-tantalate thin film microdisk[J]. Chinese Optics Letters, 2023, 21(6): 061902
    Download Citation