• Optics and Precision Engineering
  • Vol. 30, Issue 2, 210 (2022)
Fanlu WU1,2, Dejie YAN1, Qi JI1, Dong WANG1, and Jihong DONG1,*
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun30033, China
  • 2Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing100101, China
  • show less
    DOI: 10.37188/OPE.20223002.0210 Cite this Article
    Fanlu WU, Dejie YAN, Qi JI, Dong WANG, Jihong DONG. On-orbit real-time calculation method of solar elevation angle of sub-satellite point of Tianwen-1[J]. Optics and Precision Engineering, 2022, 30(2): 210 Copy Citation Text show less
    References

    [1] S WATANABE, M HIRABAYASHI, N HIRATA et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile. Science, 364, 268-272(2019).

    [2] D S LAURETTA, D N DELLAGIUSTINA, C A BENNETT et al. The unexpected surface of asteroid (101955) Bennu. Nature, 568, 55-60(2019).

    [3] D C REUTER, A A SIMON, J HAIR et al. The OSIRIS-REx visible and InfraRed spectrometer (OVIRS): spectral maps of the asteroid bennu. Space Science Reviews, 214, 1-22(2018).

    [4] D N DELLAGIUSTINA, J P EMERY, D R GOLISH et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 3, 341-351(2019).

    [5] W M GRUNDY, M K BIRD, D T BRITT et al. Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 367(2020).

    [6] S WATANABE, M HIRABAYASHI, N HIRATA et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile. Science, 364, 268-272(2019).

    [7] K KITAZATO, R E MILLIKEN, T IWATA et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science, 364, 272-275(2019).

    [8] 8欧阳自远, 邹永廖. 火星科学概论[M]. 上海: 上海科技教育出版社, 2015.OUYANGZ Y, ZOUY L. Introduction to Mars Science[M]. Shanghai: Shanghai Scientific & Technological Education Publishing House, 2015.(in Chinese)

    [9] 9李春来, 刘建军, 耿言, 等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报, 2018, 5(5): 406-413.LIC L, LIUJ J, GENGY, et al. Scientific objectives and payload configuration of China's first Mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 406-413.(in Chinese)

    [10] 10耿言, 周继时, 李莎, 等. 我国首次火星探测任务[J]. 深空探测学报, 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2018.05.001GENGY, ZHOUJ S, LIS, et al. A brief introduction of the first Mars exploration mission in China[J]. Journal of Deep Space Exploration, 2018, 5(5): 399-405.(in Chinese). doi: 10.15982/j.issn.2095-7777.2018.05.001

    [11] 11刘建军, 苏彦, 左维, 等. 中国首次火星探测任务地面应用系统[J]. 深空探测学报, 2018, 5(5): 414-425. doi: 10.15982/j.issn.2095-7777.2018.05.003LIUJ J, SUY, ZUOW, et al. Ground research and application system of China's first Mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 414-425.(in Chinese). doi: 10.15982/j.issn.2095-7777.2018.05.003

    [12] 12朱岩, 白云飞, 王连国, 等. 中国首次火星探测工程有效载荷总体设计[J]. 深空探测学报, 2017, 4(6): 510-514, 534. doi: 10.15982/j.issn.2095-7777.2017.06.002ZHUY, BAIY F, WANGL G, et al. Integral technical scheme of payloads system for Chinese Mars-1 exploration[J]. Journal of Deep Space Exploration, 2017, 4(6): 510-514, 534.(in Chinese). doi: 10.15982/j.issn.2095-7777.2017.06.002

    [13] M CARR. The surface of Mars(2007).

    [14] N BARLOW. Introduction to Mars. Mars: An Introduction to its Interior, Surface and Atmosphere(2014).

    [15] A MCEWEN, C HANSEN-KOHARCHECK, A ESPINOZA. Mars: the pristine beauty of the red planet(2017).

    [16] J F BELL, S W SQUYRES, R E ARVIDSON et al. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater. Science, 305, 800-806(2004).

    [17] J F BELL, S W SQUYRES, R E ARVIDSON et al. Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum. Science, 306, 1703-1709(2004).

    [18] M GOLOMBEK, J GRANT, D KIPP et al. Selection of the Mars science laboratory landing site. Space Science Reviews, 170, 641-737(2012).

    [19] M GOLOMBEK, D KIPP, N WARNER et al. Selection of the InSight landing site. Space Science Reviews, 211, 5-95(2017).

    [20] A S MCEWEN, E M ELIASON, J W BERGSTROM et al. Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE). Journal of Geophysical Research: Planets, 112, E05-02(2007).

    [21] 21薛旭成, 石俊霞, 吕恒毅, 等. 空间遥感相机TDI CCD积分级数和增益的优化设置[J]. 光学 精密工程, 2011, 19(4): 857-863. doi: 10.3788/ope.20111904.0857XUEX C, SHIJ X, LVH Y, et al.. Optimal set of TDI CCD integration stages and gains of space remote sensing cameras[J]. Opt. Precision Eng., 2011, 19(4): 857-863.(in Chinese). doi: 10.3788/ope.20111904.0857

    [22] 22章明朝, 周跃, 闫丰, 等. “日盲”紫外增强型CCD的自动增益控制[J]. 光学 精密工程, 2010, 18(2): 496-502.ZHANGM C, ZHOUY, YANF, et al. Automatic gain control of SBUV-ICCD[J]. Opt. Precision Eng., 2010, 18(2): 496-502.(in Chinese)

    [23] 23彭妮娜, 陈大羽, 王琨, 等. 采用线阵TDICCD相机的实时自动增益控制算法[J]. 红外与激光工程, 2011, 40(7): 1370-1375. doi: 10.3969/j.issn.1007-2276.2011.07.037PENGN N, CHEND Y, WANGK, et al. Real-time automatic gain control algorithm based on linear TDICCD camera[J]. Infrared and Laser Engineering, 2011, 40(7): 1370-1375.(in Chinese). doi: 10.3969/j.issn.1007-2276.2011.07.037

    Fanlu WU, Dejie YAN, Qi JI, Dong WANG, Jihong DONG. On-orbit real-time calculation method of solar elevation angle of sub-satellite point of Tianwen-1[J]. Optics and Precision Engineering, 2022, 30(2): 210
    Download Citation