• Acta Geographica Sinica
  • Vol. 75, Issue 5, 1065 (2020)
Feng LIN1、1、2、2, Xingwei CHEN2、2, Wenyi YAO3、3, Yihui FANG4、4, Haijun DENG2、2, Jiefeng WU5、5, and Bingqing LIN2、2
Author Affiliations
  • 1.Key Laboratory of Soil Erosion Process and Control on the Loess Plateau, Ministry of Water Resources, Zhengzhou 450003, China
  • 1.水利部黄土高原水土流失过程与控制重点实验室,郑州 450003
  • 2.School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
  • 2.福建师范大学地理科学学院,福州 350007
  • 3.Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
  • 3.黄河水利科学研究院,郑州 450003
  • 4.Information Management and Engineer Department, Fujian Business University, Fuzhou 350012, China
  • 4.福建商学院信息管理工程系,福州 350012
  • 5.Research Center of Water Resources and Environment, Sun Yat-Sen University, Guangzhou 510275, China
  • 5.中山大学水资源与环境研究中心,广州 510275
  • show less
    DOI: 10.11821/dlxb202005013 Cite this Article
    Feng LIN, Xingwei CHEN, Wenyi YAO, Yihui FANG, Haijun DENG, Jiefeng WU, Bingqing LIN. Multi-time scale analysis of water conservation in a discontinuous forest watershed based on SWAT model[J]. Acta Geographica Sinica, 2020, 75(5): 1065 Copy Citation Text show less
    References

    [2] Andreassian V. Waters and forests: From historical controversy to scientific debate[J]. Journal of Hydrology, 291, 1-27(2004).

    [3] Sandstrom K. Can forests "provide" water: Widespread myth or scientific reality?[J]. Ambio, 27, 132-138(1998).

    [4] Vertessy R, Zhang L, Dawes W R. Plantations, river flows and river salinity[J]. Australian Forestry, 66, 55-61(2003).

    [5] Bonell M, Purandara B K, Venkatesh B et al. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology[J]. Journal of Hydrology, 391, 47-62(2010).

    [6] Jobbagy E G, Jackson R B. Groundwater use and salinization with grassland afforestation[J]. Global Change Biology, 10, 1299-1312(2010).

    [7] Sahin V, Hall M J. The effects of afforestation and deforestation on water yields[J]. Journal of Hydrology, 178, 293-309(1996).

    [8] Stednick J D. Hydrochemical balance of an alpine watershed in southeast Alaska[J]. Arctic & Alpine Research, 13, 431-438(1981).

    [25] Tallis H T, Ricketts T, Guerry A D et al. InVEST 2.2.1 User’s Guide[J]. The Natural Capital Project, Stanford(2011).

    [30] Lin B Q, Chen X W, Yao H X et al. Analyses of land use change impacts on catchment runoff using different time indicators based on SWAT model[J]. Ecological Indicators, 58, 55-63(2015).

    [33] Baker T J, Miller S N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed[J]. Journal of Hydrology, 486, 100-111(2013).

    [34] Ullrich A, Volk M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity[J]. Agricultural Water Management, 96, 1207-1217(2009).

    [35] Osei M A, Amekudzi L K, Wemegah D D et al. The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT model[J]. Journal of Hydrology: Regional Studies, 25, 1-14(2019).

    [36] Cibin R, Sudheer K P, Chaubey I. Sensitivity and identifiability of stream flow generation parameters of the SWAT model[J]. Hydrological Processes, 24, 1133-1148(2010).

    [37] Strauch M, Bernhofer C, Koide S et al. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation[J]. Journal of Hydrology, 414, 413-424(2012).

    [40] Lin F, Chen X W, Yao H X. Evaluating the use of Nash-Sutcliffe efficiency coefficient in goodness-of-fit measures for daily runoff simulation with SWAT[J]. Journal of Hydrologic Engineering, 22, 231-239(2017).

    [41] Zhang D J, Chen X W, Yao H X et al. Improved calibration scheme of SWAT by separating wet and dry seasons[J]. Ecological Modelling, 301, 54-61(2015).

    [42] Arnold J G, Moriasi D N, Gassman P W et al. SWAT: Model use, calibration, and validation. Trans[J]. ASABE, 55, 1491-1508(2012).

    [43] Arnold J G, Srinivasan R, Muttiah R S et al. Large area hydrologic modeling and assessment (Part 1): Model development[J]. Journal of American Water Resource Association, 34, 73-89(1998).

    [44] Xu Z X, Pang J P, Liu C M et al. Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model[J]. Hydrological Processes, 3, 3619-3630(2009).

    [45] Neitsch S L, Arnold J G, Kiniry J R et al. SWAT User Manual, version 2009. Texas Water Resources Institute Technical Report[J]. A&M University, Texas, USA(2011).

    [46] Kiniry J R, Williams J R, King K W. Soil and Water Assessment Tool theoretical Documentation (version 2005)[J]. Computer Speech & Language, 24, 289-306(2011).

    [50] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models (Part 1): A discussion of principles[J]. Journal of Hydrology, 10, 282-290(1970).

    [51] Jha M, Gassman P W, Secchi S et al. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions[J]. Journal of the American Water Resources Association, 40, 811-825(2004).

    [55] Patil A, Ramsankaran R. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations[J]. Journal of Hydrology, 555, 683-696(2017).

    Feng LIN, Xingwei CHEN, Wenyi YAO, Yihui FANG, Haijun DENG, Jiefeng WU, Bingqing LIN. Multi-time scale analysis of water conservation in a discontinuous forest watershed based on SWAT model[J]. Acta Geographica Sinica, 2020, 75(5): 1065
    Download Citation