• Frontiers of Optoelectronics
  • Vol. 4, Issue 2, 150 (2011)
Chuyan CHEN, Qing LI*, Yiying WANG, Yuan LI, and Xiaolin ZHONG
Author Affiliations
  • School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
  • show less
    DOI: 10.1007/s12200-011-0167-4 Cite this Article
    Chuyan CHEN, Qing LI, Yiying WANG, Yuan LI, Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Frontiers of Optoelectronics, 2011, 4(2): 150 Copy Citation Text show less
    References

    [1] Wang K J, Li G D, Wang Q, Chen J S. Formation of singlecrystalline CuS nanoplates vertically standing on flat substrate. Crystal Growth & Design, 2007, 7(11): 2265-2267

    [2] Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 2000, 1(65): 1-31

    [3] Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8-9): 1693-1607

    [4] Raevskaya A E, Stroyuk A U, Kuchmii S Y, Kryukov A I. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. Journal of Molecular Catalysis A: Chemical, 2004, 212(1-2): 259-265

    [5] Zhang Y C, Qian T, Hu X Y, Zhou W D. A facile low temperature solvothermal route to copper monosulfide submicrotubes. Materials Research Bulletin, 2005, 40(10): 1696-1704

    [6] Barrelet C J, Wu Y, Bell D C, Lieber C M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society, 2003, 125(38): 11498-11499

    [7] Xue P C, Lu R, Huang Y, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y Y. Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir, 2004, 20(15): 6470-6475

    [8] Xue P C, Lu R, Li D M, Jin M, Tan C, Bao C, Wang Z, Zhao Y, Zhao Y Y. Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir, 2004, 20(25): 11234-11239

    [9] Tan C H, Zhu Y L, Lu R, Xue P C, Bao C Y, Liu X L, Fei Z P, Zhao Y Y. Synthesis of copper sulfide nanotube in the hydrogel system. Materials Chemistry and Physics, 2005, 91(1): 44-47

    [10] Wu C Y, Yu S H, Chen S F, Liu G N, Liu B H. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mile conditions. Journal of Materials Chemistry, 2006, 16(32): 3326-3331

    [11] Ge L, Jing X Y,Wang J, Jamil S, Liu Q, Song D L, Xie Y, Yang P P, Zhang M L. Ionic liquid-assisted synthesis of CuS nestlike hollow spheres assembled by microflakes using an oil water interface route. Crystal Growth & Design, 2010, 10(4): 1688-1692

    [12] Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials, 2008, 20(19): 6263-6369

    [13] Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422-427

    [14] Zhu L Y, Xie Y, Zheng XW, Liu X, Zhou G E. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. Journal of Crystal Growth, 2004, 260(3-4): 494-499

    [15] Zhang Y C, Hu X Y, Qiao T. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Communications, 2004, 132(11): 779-782

    [16] Roy P, Mondal K, Srivastzva S K. Synthesis of twinned CuS nanorods by a simple wet chemical method. Crystal Growth & Design, 2008, 5(8): 1530-1534

    [17] Gao L, Wang E B, Lian S Y, Kang Z H, Lan Y, Wu D. Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Communications, 2004, 130(5): 309-312

    [18] van Rantwijk F, Sheldon R A. Biocatalysis in ionic liquids. Chemical Reviews, 2007, 107(6): 2757-2785

    [19] Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445-14448

    [20] Qin Y, Song N J, Zhao N N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chemistry of Materials, 2008, 20(12): 3965-3972

    [21] Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society, 2005, 127(15): 5316-5317

    [22] Thirumurugan A. Use of ionic liquids in synthesis of nanocrystals, nanorods and nanowires of elemental chalcogens. Bulletin of Materials Science, 2007, 30(2): 179-182

    [23] Movahedi M, Kowsari E, Mahjoub A R, Yavari I. A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method. Materials Letters, 2008, 62(23): 3856-3858

    [24] Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M= Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B, 2005, 109(10): 4361-4364

    [25] Zhu Y J,WangWW, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie, 2004, 43(11): 1410-1414

    [26] Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials A general method for the fabrication of nanosized metal fluorides. Chemistry of Materials, 2006, 18(13): 3162-3168

    [27] He Y H, Li D Z, Chen Z X, Chen Y B, Fu X Z. New synthesis of single-crystalline InVO4 nanorods using an ionic liquid. Journal of the American Ceramic Society, 2007, 90(11): 3698-3703

    [28] Tang G H. Synthesis of nanometer powders by liquid precipitation. Shanxi Chemical Industry, 2005, 25(3): 8-10 (in Chinese)

    [29] Ding T Y, Wang M S, Guo S P, Guo G C, Huang J S. CuS nanoflowers prepared by a polyol route and their photocatalytic property. Materials Letters, 2008, 62(30): 4529-4531

    [30] Zhang J, Zhang Z K. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(15): 2279-2281

    [31] Thongtem T, Phuruangrant A, Thongtem S. Formation of CuS with flower like, hollow spherical, and tubular structures using the solvothermal-microwave process. Current Applied Physics, 2009, 9(1): 195-200

    [32] Pereiro A B, Legido J L, Rodríguez A. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. Journal of Chemical Thermodynamics, 2007, 39(8): 1168-1175

    [33] Zhang J, Zhang Z K. Shape-controlled synthesis of CuS nanocrystallites via a facial solution route. Journal of Functional Materials, 2007, 38: 2056-2058

    [34] Xu H L, Wang W Z, Zhu W, Zhou L. Synthesis of octahedral CuS nanocages via a solid-liquid reaction. Nanotechnology, 2006, 17(15): 3649-3654

    [35] Chen L F, Yu W, Li Y. Synthesis and characterization of tuber CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1-2): 52-54

    [36] Li F, Kong T, Bi W T, Li D C, Li Z, Huang X T. Synthesis and optical of CuS nanoplate-based architectures by a solvothermal method. Applied Surface Science, 2009, 255(12): 6285-6289

    Chuyan CHEN, Qing LI, Yiying WANG, Yuan LI, Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Frontiers of Optoelectronics, 2011, 4(2): 150
    Download Citation