• Acta Physica Sinica
  • Vol. 69, Issue 16, 164401-1 (2020)
Bei-Hao Zhang and Lin Zheng*
Author Affiliations
  • School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.7498/aps.69.20200308 Cite this Article
    Bei-Hao Zhang, Lin Zheng. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method[J]. Acta Physica Sinica, 2020, 69(16): 164401-1 Copy Citation Text show less
    Schematic diagram of the physical model.
    Fig. 1. Schematic diagram of the physical model.
    Streamlines, isotherms contours for different : (a) = 0.3; (b) = 0.5; (c) = 0.7; (d) = 0.9.
    Fig. 2. Streamlines, isotherms contours for different : (a) = 0.3; (b) = 0.5; (c) = 0.7; (d) = 0.9.
    (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different.
    Fig. 3. (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different .
    (a) At the heated wall Nuave number; (b) local Nu number for different .
    Fig. 4. (a) At the heated wall Nuave number; (b) local Nu number for different .
    Streamlines, isotherms contours for different Ra number: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.
    Fig. 5. Streamlines, isotherms contours for different Ra number: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.
    (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different .
    Fig. 6. (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different .
    (a) At the heated wall Nuave number; (b) local Nu number for different Ra.
    Fig. 7. (a) At the heated wall Nuave number; (b) local Nu number for different Ra.
    Streamlines, isotherms contours for different γ number: (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°.
    Fig. 8. Streamlines, isotherms contours for different γ number: (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°.
    (a) Local temperature distribution along the Y = 0.5; (b) average velocity in the y direction & Nuave number at the heated wall in different γ.
    Fig. 9. (a) Local temperature distribution along the Y = 0.5; (b) average velocity in the y direction & Nuave number at the heated wall in different γ.
    (a) Local velocity in the y direction; (b) local Nuave number at the heated wall in different γ.
    Fig. 10. (a) Local velocity in the y direction; (b) local Nuave number at the heated wall in different γ.
    (a) Variation of Nuave number as a function of in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different .
    Fig. 11. (a) Variation of Nuave number as a function of in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different .
    (a) Variation of Nuave number as a function of ϕ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different ϕ.
    Fig. 12. (a) Variation of Nuave number as a function of ϕ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different ϕ.
    物性参数H2O Al2O3Glass fiber[23,24]
    ρ/kg·m–3997.13971650
    Cp/J·kg–1·K–14179765750
    k/W·m–1·K–10.613251.2
    β/K–121 × 10–51.89 × 10–5
    ds/nm 47
    Table 1.

    Thermophysical properties of water, Al2O3 and glass fibers.

    H2O, Al2O3和玻璃纤维的热物理性质

    热物性参数计算表达式
    纳米流体粘度$\mu {}_{nf} = \dfrac{{{\mu _f}}}{{{{\left( {1 - \phi } \right)}^{2.5}}}}$
    纳米流体密度${\rho _{nf}} = \left( {1 - \phi } \right){\rho _f} + \phi {\rho _s}$
    纳米流体热容${\left( {\rho {C_p}} \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho {C_p}} \right)_f} + \phi {\left( {\rho {C_p}} \right)_s}$
    纳米流体热扩散系数${\alpha _{nf}} = \dfrac{{{k_{nf}}}}{{{{\left( {\rho {C_p}} \right)}_{nf}}}}$
    纳米流体热膨胀系数${\left( {\rho \beta } \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho \beta } \right)_f} + \phi {\left( {\rho \beta } \right)_s}$
    纳米流体导热系数${k_{nf}} = \dfrac{{{k_p} + 2{k_f} - 2\left( {{k_f} - {k_p}} \right)\phi }}{{{k_p} + 2{k_f} + 2\left( {{k_f} - {k_p}} \right)\phi }}{k_f}$
    多孔介质有效 导热系数 ${k_m} = \left( {1 - \epsilon} \right){k_p} + {\epsilon k_{nf}}$
    Table 2.

    Calculation formula for thermodynamic properties of nanofluids.

    纳米流体的热物性参数计算公式

    不同网格数下的Nuave
    80 × 80100 × 100120 × 120140 × 140
    Nuave8.5288.6708.7448.785
    误差/%3.39%1.70%0.83%0.36%
    Table 3. Comparison of Nuave number with literature[33] in different grids number.
    Ra文献[27] 本文结果误差/%
    1031.1161.1230.63
    1042.2382.2661.25
    1054.5094.5561.04
    1068.8178.7440.83
    Table 4. Comparison of Nuave number with previous literature[33].
    NO.DaRa文献[34] 本文结果误差/%
    110–21041.5301.4972.16
    210–21053.5553.4413.09
    310–25 × 1055.7405.6940.87
    Table 5. Comparison of Nuave number with previous literature[34].
    Bei-Hao Zhang, Lin Zheng. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method[J]. Acta Physica Sinica, 2020, 69(16): 164401-1
    Download Citation