• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 9, 2166 (2023)
LIU Songhui*, ZHANG Cheng, and GUAN Xuemao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LIU Songhui, ZHANG Cheng, GUAN Xuemao. Properties and Microstructure of Fiberboard Prepared from CO2 and Magnesium Slag[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2166 Copy Citation Text show less
    References

    [1] WU L E, HAN F L, LIU G Q. Magnesium slag generated by reduction smelting using pidgeon process[M]//Comprehensive Utilization of Magnesium Slag by Pidgeon Process. Singapore: Springer Singapore, 2021: 69-82.

    [2] Yulin City Committee of the Chinese People’s Political Consultative Conference. Research Report on Promoting the High Quality Development of Magnesium Industry in Yulin City[EB/OL]. [2021-08-13]. http://www.ylzx.gov.cn/show.php?id=7823&cid=32.

    [3] LI Y L, FAN Y, CHEN Z L, et al. Chemical, mineralogical, and morphological characteristics of pidgeon magnesium slag[J]. Environ Eng Sci, 2016, 33(4): 290-297.

    [4] China Ministry of Industry and Information Technology of the People Republic. Notice on the Implementation Plan for Accelerating the Comprehensive Utilization of Industrial Resources Printed by Eight Departments of China[EB/OL]. [2022-02-10]. https://www.miit.gov. cn/zwgk/zcwj/wjfb/tz/art/2022/art_fc489238e7134848ab3f14bfe86c283e.html.

    [5] JIA L, HAN F, LI Z P, et al. Influence mechanism of additives on the crystal structure and desulfurization performance of magnesium slag[J]. J Mater Cycles Waste Manag, 2021, 23(3): 1114-1125.

    [6] Wang Jinhang, Liu Jiahao, Tan Xiao, et al. Stabilizing effect of magnesium slag on Cd and Pb in polluted soil[J]. J Beijing Univ Chemi Technol: Natu Sci Edi, 2020, 47(2): 8-16.

    [7] LI H X, HUANG Y Y, YANG X J, et al. Approach to the management of magnesium slag via the production of Portland cement clinker[J]. J Mater Cycles Waste Manag, 2018, 20(3): 1701-1709.

    [8] LEI M, DENG S M, HUANG K Y, et al. Preparation and characterization of a CO2 activated aerated concrete with magnesium slag as carbonatable binder[J]. Constr Build Mater, 2022, 353: 129112.

    [9] LIU Q, MA J X, ZHENG W W. Study on the effect of ash-slag ratio on mechanical properties of magnesium slag cementitious material[J]. IOP Conf Ser: Earth Environ Sci, 2019, 371(4): 042036.

    [10] JI G X, PENG X Q, WANG S P, et al. Influence of magnesium slag as a mineral admixture on the performance of concrete[J]. Constr Build Mater, 2021, 295: 123619.

    [12] GU Y Y, ZHANG Y Y, CHANG J, et al. Alteration mechanisms of carbonated steel slag product under hydrochloric acid attack[J]. J Sustain Cem Based Mater, 2021, 10(1): 46-64.

    [13] LUKMANOVA L V, KH MUKHAMETRAKHIMOV R, GILMANSHIN I R. Investigation of mechanical properties of fiber-cement board reinforced with cellulosic fibers[J]. IOP Conf Ser: Mater Sci Eng, 2019, 570(1): 012113.

    [14] ASHORI A, TABARSA T, AZIZI K, et al. Wood-wool cement board using mixture of eucalypt and poplar[J]. Ind Crops Prod, 2011, 34(1): 1146-1149.

    [15] KOCHOVA K, GAUVIN F, SCHOLLBACH K, et al. Using alternative waste coir fibres as a reinforcement in cement-fibre composites[J]. Constr Build Mater, 2020, 231(C): 117121.

    [16] GHOFRANI M, MOKARAM K N, ASHORI A, et al. Fiber-cement composite using rice stalk fiber and rice husk ash: mechanical and physical properties[J]. J Compos Mater, 2015, 49(26): 3317-3322.

    [17] ASHORI A, TABARSA T, VALIZADEH I. Fiber reinforced cement boards made from recycled newsprint paper[J]. Mater Sci Eng A, 2011, 528(25-26): 7801-7804.

    [18] KHORAMI M, GANJIAN E, MORTAZAVI A, et al. Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibres[J]. Constr Build Mater, 2017, 152: 746-755.

    [19] JAAFER B S, MAJEED A, KADHIM M J. Physical and mechanical properties of reed fiber cement board[J]. IOP Conference Ser: Mater Sci Eng, 2020, 928(2): 022054.

    [20] CHAKARTNARODOM P, PRAKAYPAN W, INEURE P, et al. Feasibility study of using basalt fibers as the reinforcement phase in fiber-cement products[J]. Key Eng Mater, 2018, 766: 252-257.

    [21] CAO Z, CAO Y D, ZHANG J S, et al. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes[J]. Int J Miner Metall Mater, 2015, 22(8): 892-900.

    [22] CHEN M X, LU L C, WANG S D, et al. Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing[J]. Constr Build Mater, 2017, 143: 280-288.

    [23] MU Y D, LIU Z C, WANG F Z. Comparative study on the carbonation-activated calcium silicates as sustainable binders: reactivity, mechanical performance, and microstructure[J]. ACS Sustainable Chem Eng, 2019, 7(7): 7058-7070.

    [24] HOU G H, YAN Z W, SUN J F, et al. Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale[J]. Constr Build Mater, 2021, 271: 121581.

    [25] MRMOL G, SAVASTANO JR H. High-toughness M-S-H cement composites reinforced with cellulose fibers through CO2 curing[J]. Cem Concr Compos, 2022, 134: 104759.

    [26] ZOD N, MUCCI A, BAHN O, et al. Steel slag-bonded strand board as a carbon-negative building product[J]. Constr Build Mater, 2022, 340: 127695.

    [27] Liping Feng. Fibre Cement Board and Calcium Silicate Board[M]. Wuhan: Wuhan University of Technology Press, 2020: 51-54.

    [28] SHAO Y X, ROSTAMI V, HE Z, et al. Accelerated carbonation of Portland limestone cement[J]. J Mater Civ Eng, 2014, 26(1): 117-124.

    [29] YANG H M, HE Z, SHAO Y X. Early carbonation behavior of high-volume dolomite powder-cement based materials[J]. J Wuhan Univ Technol: Mat Sci Ed, 2015, 30(3): 541-549.

    [30] WANG D, XIONG C, LI W Z, et al. Growth of calcium carbonate induced by accelerated carbonation of tricalcium silicate[J]. ACS Sustainable Chem Eng, 2020, 8(39): 14718-14731.

    [31] FENG W P, DONG Z J, JIN Y, et al. Comparison on micromechanical properties of interfacial transition zone in concrete with iron ore tailings or crushed gravel as aggregate[J]. J Clean Prod, 2021, 319: 128737.

    [32] LIU S H, SHEN P L, XUAN D X, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cem Concr Compos, 2021, 118: 103988.

    [33] MIAO F, ZHANG M H, YANG R D, et al. Effect of beating on softwood pulp fiber reinforced calcium silicate board[J]. Cellulose, 2022, 29(7): 4125-4134.

    [34] MO L W, PANESAR D K. Accelerated carbonation-A potential approach to sequester CO2 in cement paste containing slag and reactive MgO[J]. Cem Concr Compos, 2013, 43: 69-77.

    [35] PANESAR D K, MO L W. Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing[J]. Cem Concr Compos, 2013, 38: 40-49.

    [36] SHEN P L, JIANG Y, ZHANG Y Y, et al. Production of aragonite whiskers by carbonation of fine recycled concrete wastes: an alternative pathway for efficient CO2 sequestration[J]. Renew Sustain Energy Rev, 2023, 173: 113079.

    [37] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials[J]. J Mater Sci, 2016, 51(13): 6173-6191.

    [38] ZEPPER J C O, VAN DER LAAN S R, SCHOLLBACH K, et al. Reactivity of BOF slag under autoclaving conditions[J]. Constr Build Mater, 2023, 364: 129957.

    [39] ASHRAF W, OLEK J. Elucidating the accelerated carbonation products of calcium silicates using multi-technique approach[J]. J CO2 Util, 2018, 23: 61-74.

    [40] ROSTAMI V, SHAO Y X, BOYD A J, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cem Concr Res, 2012, 42(1): 186-193.

    [41] XU L H, DENG F Q, CHI Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste[J]. Constr Build Mater, 2017, 145: 619-638.

    [42] CHANG X X, LIU S H, ZHANG C, et al. Carbonation-hardening properties and ITZ microstructure of low-calcium CO2 sequestration binder mortar[J]. Constr Build Mater, 2022, 336(S1): 127589.

    [43] SORELLI L, CONSTANTINIDES G, ULM F J, et al. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques[J]. Cem Concr Res, 2008, 38(12): 1447-1456.

    [44] CONSTANTINIDES G, ULM F J. The nanogranular nature of C-S-H[J]. J Mech Phys Solids, 2007, 55(1): 64-90.

    [45] TRONCOSO O P, TORRES F G, ARROYO J, et al. Mechanical properties of calcite- and aragonite-based structures by nanoindentation tests[J]. Bioinspired Biomim Nanobiomater, 2020, 9(2): 112-121.

    [46] Halmann M.M,Steinberg M. Greenhouse gas carbon dioxide mitigation: Science Greenhouse gas carbon dioxide mitigation: Science and Technology. 1998: CRC press[M]. Boca Raton: CRC Press, 1998: 568.

    LIU Songhui, ZHANG Cheng, GUAN Xuemao. Properties and Microstructure of Fiberboard Prepared from CO2 and Magnesium Slag[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2166
    Download Citation