• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 12, 3133 (2023)
WANG Ruida1,2, ZHAO Shixian2, LI Lei3, CHEN Liugang1..., SI Yaochen2, LI Lingfeng2, LI Hongxia2,3 and FENG Jing4|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Ruida, ZHAO Shixian, LI Lei, CHEN Liugang, SI Yaochen, LI Lingfeng, LI Hongxia, FENG Jing. Thermal, Mechanical and Molten Silicate Environmental Deposits Corrosion Resistance Properties of High-Entropy (Y0.2Gd0.2Dy0.2Ce0.2La0.2)TaO4 Ceramic Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3133 Copy Citation Text show less
    References

    [1] TURCER L R, PADTURE N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics[J]. Scr Mater, 2018, 154: 111–117.

    [2] YANG G J, CHEN Z L, LI C X, et al. Microstructural and mechanical property evolutions of plasma-sprayed YSZ coating during high-temperature exposure: Comparison study between 8YSZ and 20YSZ[J]. J Therm Spray Technol, 2013, 22(8): 1294–1302.

    [4] KUMAR V, BALASUBRAMANIAN K. Progress update on failure mechanisms of advanced thermal barrier coatings: A review[J]. Prog Org Coat, 2016, 90: 54–82.

    [5] ZHAO Z F, CHEN H, XIANG H M, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. J Adv Ceram, 2020, 9(3): 303–311.

    [6] WANG J, CHONG X Y, ZHOU R, et al. Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scr Mater, 2017, 126: 24–28.

    [7] WANG J, ZHOU Y, CHONG X Y, et al. Microstructure and thermal properties of a promising thermal barrier coating: YTaO4[J]. Ceram Int, 2016, 42(12): 13876–13881.

    [8] ZHOU Y X, GAN M D, YU W, et al. First-principles study of thermophysical properties of polymorphous YTaO4 ceramics[J]. J Am Ceram Soc, 2021, 104(12): 6467–6480.

    [9] CHEN L, HU M Y, WU P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. J Am Ceram Soc, 2019, 102(8): 4809–4821.

    [10] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299–303.

    [11] YEH J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759–1771.

    [12] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.

    [13] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5(4): 295–309.

    [15] GUO D H, ZHOU F F, XU B S, et al. High-entropy (La0.2Nd0.2Sm0.2 Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 thermal barrier coating material with significantly enhanced fracture toughness[J]. Chin J Aeronaut, 2023, 36(4): 556–564.

    [16] CHEN L, LI B H, GUO J, et al. High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings[J]. J Adv Ceram, 2022, 11(4): 556–569.

    [17] SWALIN R A, ARENTS J. Thermodynamics of solids[J]. J Electrochem Soc, 1962, 109(12): 308C.

    [18] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. J Am Ceram Soc, 1981, 64(9): 533–538.

    [19] BOCCACCINI A R. Machinability and brittleness of glass-ceramics[J]. J Mater Process Technol, 1997, 65(1–3): 302–304.

    [20] DELON E, ANSART F, DULUARD S, et al. Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers[J]. Ceram Int, 2016, 42(12): 13704–13714.

    [22] CHEN L, JIANG Y H, CHONG X Y, et al. Synthesis and thermophysical properties of RETa3O9 (RE=Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings[J]. J Am Ceram Soc, 2018, 101(3): 1266–1278.

    [23] PADTURE N P, KLEMENS P G. Low thermal conductivity in garnets[J]. J Am Ceram Soc, 2005, 80(4): 1018–1020.

    [24] WANG J, WU F S, ZOU R A, et al. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4[J]. J Am Ceram Soc, 2021, 104(11): 5873–5882.

    [25] ZHAO Z F, XIANG H M, DAI F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2 Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J]. J Mater Sci Technol, 2019, 35(11): 2647–2651.

    [26] QIU S H, LI M L, SHAO G, et al. (Ca, Sr, Ba)ZrO3: a promising entropy-stabilized ceramic for titanium alloys smelting[J]. J Mater Sci Technol, 2021, 65: 82–88.

    [27] WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. J Adv Ceram, 2022, 11(7): 985–1068.

    [28] TOBERER E S, ZEVALKINK A, SNYDER G J. Phonon engineering through crystal chemistry[J]. J Mater Chem, 2011, 21(40): 15843–15852.

    [29] WANG J, CHONG X Y, LV L, et al. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties[J]. J Mater Sci Technol, 2023, 157: 98–106.

    [30] HE K, CHEN J J, WENG W X, et al. Microstructure and mechanical properties of plasma sprayed Al2O3-YSZ composite coatings[J]. Vacuum, 2018, 151: 209–220.

    [31] JANG B K, MATSUBARA H. Hardness and Young’s modulus of nanoporous EB-PVD YSZ coatings by nanoindentation[J]. J Alloys Compd, 2005, 402(1–2): 237–241.

    [32] GADAG S, SUBBARAYAN G, BARKER W. Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials[J]. J Mater Sci, 2006, 41(4): 1221–1232.

    [33] SOOD A, CHEAITO R, BAI T Y, et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries[J]. Nano Lett, 2018, 18(6): 3466–3472.

    [34] ZHU J T, MENG X Y, XU J, et al. Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb)[J]. J Eur Ceram Soc, 2021, 41(1): 1052–1057.

    [35] ZHU J T, XU J, ZHANG P, et al. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates[J]. Scr Mater, 2021, 200: 113912.

    [36] REN K, WANG Q K, SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scr Mater, 2020, 178: 382–386.

    [37] WANG H G. Criteria for analysis of abradable coatings[J]. Surf Coat Technol, 1996, 79(1–3): 71–75.

    [38] VIDAL-SéTIF M H, RIO C, BOIVIN D, et al. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS[J]. Surf Coat Technol, 2014, 239: 41–48.

    [39] ZHANG C L, FEI J M, GUO L, et al. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating[J]. Ceram Int, 2018, 44(8): 8818–8826.

    [40] LI M Z, CHENG Y X, GUO L, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts[J]. Ceram Int, 2017, 43(10): 7797–7803.

    [41] WU D, YAO Y, SHAN X A, et al. Equimolar YO1.5 and TaO2.5 co-doped ZrO2 as a potential CMAS-resistant material for thermal barrier coatings[J]. J Am Ceram Soc, 2021, 104(2): 1132–1145.

    [42] YE F X, YANG W Q, YAN S, et al. The wettability and corrosion behaviors of CMAS on M-YTaO4 at 1 350 ℃[J]. J Therm Spray Technol, 2021, 30(4): 873–885.

    WANG Ruida, ZHAO Shixian, LI Lei, CHEN Liugang, SI Yaochen, LI Lingfeng, LI Hongxia, FENG Jing. Thermal, Mechanical and Molten Silicate Environmental Deposits Corrosion Resistance Properties of High-Entropy (Y0.2Gd0.2Dy0.2Ce0.2La0.2)TaO4 Ceramic Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3133
    Download Citation