[1] TURCER L R, PADTURE N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics[J]. Scr Mater, 2018, 154: 111–117.
[2] YANG G J, CHEN Z L, LI C X, et al. Microstructural and mechanical property evolutions of plasma-sprayed YSZ coating during high-temperature exposure: Comparison study between 8YSZ and 20YSZ[J]. J Therm Spray Technol, 2013, 22(8): 1294–1302.
[4] KUMAR V, BALASUBRAMANIAN K. Progress update on failure mechanisms of advanced thermal barrier coatings: A review[J]. Prog Org Coat, 2016, 90: 54–82.
[5] ZHAO Z F, CHEN H, XIANG H M, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. J Adv Ceram, 2020, 9(3): 303–311.
[6] WANG J, CHONG X Y, ZHOU R, et al. Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scr Mater, 2017, 126: 24–28.
[7] WANG J, ZHOU Y, CHONG X Y, et al. Microstructure and thermal properties of a promising thermal barrier coating: YTaO4[J]. Ceram Int, 2016, 42(12): 13876–13881.
[8] ZHOU Y X, GAN M D, YU W, et al. First-principles study of thermophysical properties of polymorphous YTaO4 ceramics[J]. J Am Ceram Soc, 2021, 104(12): 6467–6480.
[9] CHEN L, HU M Y, WU P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. J Am Ceram Soc, 2019, 102(8): 4809–4821.
[10] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299–303.
[11] YEH J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759–1771.
[12] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[13] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5(4): 295–309.
[15] GUO D H, ZHOU F F, XU B S, et al. High-entropy (La0.2Nd0.2Sm0.2 Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 thermal barrier coating material with significantly enhanced fracture toughness[J]. Chin J Aeronaut, 2023, 36(4): 556–564.
[16] CHEN L, LI B H, GUO J, et al. High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings[J]. J Adv Ceram, 2022, 11(4): 556–569.
[17] SWALIN R A, ARENTS J. Thermodynamics of solids[J]. J Electrochem Soc, 1962, 109(12): 308C.
[18] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. J Am Ceram Soc, 1981, 64(9): 533–538.
[19] BOCCACCINI A R. Machinability and brittleness of glass-ceramics[J]. J Mater Process Technol, 1997, 65(1–3): 302–304.
[20] DELON E, ANSART F, DULUARD S, et al. Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers[J]. Ceram Int, 2016, 42(12): 13704–13714.
[22] CHEN L, JIANG Y H, CHONG X Y, et al. Synthesis and thermophysical properties of RETa3O9 (RE=Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings[J]. J Am Ceram Soc, 2018, 101(3): 1266–1278.
[23] PADTURE N P, KLEMENS P G. Low thermal conductivity in garnets[J]. J Am Ceram Soc, 2005, 80(4): 1018–1020.
[24] WANG J, WU F S, ZOU R A, et al. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4[J]. J Am Ceram Soc, 2021, 104(11): 5873–5882.
[25] ZHAO Z F, XIANG H M, DAI F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2 Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J]. J Mater Sci Technol, 2019, 35(11): 2647–2651.
[26] QIU S H, LI M L, SHAO G, et al. (Ca, Sr, Ba)ZrO3: a promising entropy-stabilized ceramic for titanium alloys smelting[J]. J Mater Sci Technol, 2021, 65: 82–88.
[27] WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. J Adv Ceram, 2022, 11(7): 985–1068.
[28] TOBERER E S, ZEVALKINK A, SNYDER G J. Phonon engineering through crystal chemistry[J]. J Mater Chem, 2011, 21(40): 15843–15852.
[29] WANG J, CHONG X Y, LV L, et al. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties[J]. J Mater Sci Technol, 2023, 157: 98–106.
[30] HE K, CHEN J J, WENG W X, et al. Microstructure and mechanical properties of plasma sprayed Al2O3-YSZ composite coatings[J]. Vacuum, 2018, 151: 209–220.
[31] JANG B K, MATSUBARA H. Hardness and Young’s modulus of nanoporous EB-PVD YSZ coatings by nanoindentation[J]. J Alloys Compd, 2005, 402(1–2): 237–241.
[32] GADAG S, SUBBARAYAN G, BARKER W. Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials[J]. J Mater Sci, 2006, 41(4): 1221–1232.
[33] SOOD A, CHEAITO R, BAI T Y, et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries[J]. Nano Lett, 2018, 18(6): 3466–3472.
[34] ZHU J T, MENG X Y, XU J, et al. Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb)[J]. J Eur Ceram Soc, 2021, 41(1): 1052–1057.
[35] ZHU J T, XU J, ZHANG P, et al. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates[J]. Scr Mater, 2021, 200: 113912.
[36] REN K, WANG Q K, SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scr Mater, 2020, 178: 382–386.
[37] WANG H G. Criteria for analysis of abradable coatings[J]. Surf Coat Technol, 1996, 79(1–3): 71–75.
[38] VIDAL-SéTIF M H, RIO C, BOIVIN D, et al. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS[J]. Surf Coat Technol, 2014, 239: 41–48.
[39] ZHANG C L, FEI J M, GUO L, et al. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating[J]. Ceram Int, 2018, 44(8): 8818–8826.
[40] LI M Z, CHENG Y X, GUO L, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts[J]. Ceram Int, 2017, 43(10): 7797–7803.
[41] WU D, YAO Y, SHAN X A, et al. Equimolar YO1.5 and TaO2.5 co-doped ZrO2 as a potential CMAS-resistant material for thermal barrier coatings[J]. J Am Ceram Soc, 2021, 104(2): 1132–1145.
[42] YE F X, YANG W Q, YAN S, et al. The wettability and corrosion behaviors of CMAS on M-YTaO4 at 1 350 ℃[J]. J Therm Spray Technol, 2021, 30(4): 873–885.