• Photonics Research
  • Vol. 11, Issue 12, 2168 (2023)
Xinyao Yu1, Fanghao Li1,*, Tingting Lang2,4, Jianyuan Qin3, and Xiao Ma2
Author Affiliations
  • 1Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • 2School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
  • 3Center for Terahertz Research, China Jiliang University, Hangzhou 310018, China
  • 4e-mail: langtingting@zust.edu.cn
  • show less
    DOI: 10.1364/PRJ.501124 Cite this Article Set citation alerts
    Xinyao Yu, Fanghao Li, Tingting Lang, Jianyuan Qin, Xiao Ma, "Ultrasensitive tunable terahertz lithium niobate metasurface sensing based on bound states in the continuum," Photonics Res. 11, 2168 (2023) Copy Citation Text show less
    References

    [1] K. Kawase, Y. Ogawa, Y. Y. Watanabe, H. Inoue. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express, 11, 2549-2554(2003).

    [2] Y. Xie, Y. Ma, X. Liu, S. Khan, A. W. Chen, L. Zhu, J. Zhu, Q. H. Liu. Dual-degree-of-freedom multiplexed metasensor based on quasi-BICs for boosting broadband trace isomer detection by THz molecular fingerprint. IEEE J. Sel. Top. Quantum Electron., 29, 8600110(2023).

    [3] Z. Peng, Z. Zheng, Z. Yu, H. Lan, M. Zhang, S. Wang, L. Li, H. Liang, H. Su. Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide. Opt. Laser Technol., 157, 108723(2023).

    [4] J. F. Federici, B. Schulkin, F. Huang, D. E. Gary, R. Barat, F. J. Oliveira, D. Zimdars. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol., 20, S266-S280(2005).

    [5] M. L. Tseng, Y. Jahani, A. Leitis, H. Altug. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics, 8, 47-60(2020).

    [6] R. M. Walser. Electromagnetic Metamaterials(2001).

    [7] B. Liu, Y. Peng, Z. Jin, X. Wu, H. Gu, D. Wei, Y. Zhu, S. Zhuang. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC. Chem. Eng. J., 462, 142347(2023).

    [8] M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Z. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv., 1, e1500396(2015).

    [9] W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, G. Sun. Comparative analysis of metals and alternative infrared plasmonic materials. ACS Photonics, 5, 2541-2548(2017).

    [10] C. Kyaw, R. Yahiaoui, J. A. Burrow, V. C. Tran, K. Keelen, W. Sims, E. Red, W. S. Rockward, M. A. Thomas, A. Sarangan, I. Agha, T. A. Searles. Polarization-selective modulation of supercavity resonances originating from bound states in the continuum. Commun. Phys., 3, 212(2020).

    [11] L. Wang, Z.-Y. Zhao, M. Du, H. Qin, R. T. Ako, S. Sriram. Tuning symmetry-protected quasi bound state in the continuum using terahertz meta-atoms of rotational and reflectional symmetry. Opt. Express, 30, 23631-23639(2022).

    [12] X. L. Liu, T. D. Starr, A. F. Starr, W. J. Padilla. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett., 104, 207403(2010).

    [13] Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, R. Singh. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett., 115, 151105(2019).

    [14] J. A. Álvarez-Sanchis, B. Vidal, S. A. Tretyakov, A. Díaz-Rubio. Loss-induced performance limits of all-dielectric metasurfaces for terahertz sensing. Phys. Rev. Appl., 19, 014009(2023).

    [15] K. Wang, H. Liu, Z. Li, M. Liu, Y. Zhang, H. Zhang. All-dielectric metasurface-based multimode sensing with symmetry-protected and accidental bound states in the continuum. Results Phys., 46, 106276(2023).

    [16] H. Liu, K. Wang, J. Gao, M. Z. Liu, H. Zhang, D. Hu. Dirac semimetal and an all dielectric based tunable ultrasensitive terahertz sensor with multiple bound states in the continuum. Opt. Express, 30, 46471-46486(2022).

    [17] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [18] A. Ahmadi, H. Mosallaei. Physical configuration and performance modeling of all-dielectric metamaterials. Phys. Rev. B, 77, 045104(2008).

    [19] S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. K. Lim, V. G. Achanta, S. S. Prabhu, Q. Wang, Y. S. Kivshar, R. Singh. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).

    [20] E. V. Melik-Gaykazyan, S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, Y. S. Kivshar. Selective third-harmonic generation by structured light in Mie-resonant nanoparticles. ACS Photonics, 5, 728-733(2017).

    [21] Y. Yang, W. L. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. A. Puretzky, D. B. Geohegan, J. Valentine. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [22] S. Zeng, R. Singh, J. Shang, T. Yu, C.-K. Chen, F. Yin, D. Baillargeat, P. Coquet, H.-P. Ho, A. V. Kabashin, K.-T. Yong. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater., 27, 6163-6169(2015).

    [23] Y. Liang, K. Koshelev, F. Zhang, H.-C. Lin, S. Lin, J. Wu, B. Jia, Y. S. Kivshar. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [24] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev., 32, 3231-3242(1985).

    [25] J. Von Neumann, E. P. Wigner. Über merkwürdige diskrete Eigenwerte. Collected Works of Eugene Paul Wigner, 291-293(1993).

    [26] D. C. Marinica, A. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [27] C.-W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljacic. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [28] M. V. Rybin, Y. S. Kivshar. Supercavity lasing. Nature, 541, 164-165(2017).

    [29] Z. F. Sadrieva, I. S. Sinev, K. Koshelev, A. Samusev, I. Iorsh, O. Takayama, R. Malureanu, A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics, 4, 723-727(2017).

    [30] J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, O. Shapira. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [31] Y. Yang, C. Peng, Y. Liang, Z. Li, S. Noda. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).

    [32] W. Cen, T. Lang, J. Wang, M. Xiao. High-Q Fano terahertz resonance based on bound states in the continuum in All-dielectric metasurface. Appl. Surf. Sci., 575, 151723(2022).

    [33] N. Yang, T. Lang, W. Cen, M. Xiao, J. Zhang, Z. Yu. Performance comparison of two terahertz all-dielectric metasurfaces based on bound states in the continuum. J. Opt. Soc. Am. B, 40, 366-372(2023).

    [34] P. Wang, F. He, J. Liu, F. Shu, B. Fang, T. Lang, X. Jing, Z. Hong. Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum. Photonics Res., 10, 2743-2750(2022).

    [35] Y. Wang, Z. Han, Y. Du, J. Qin. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 10, 1295-1307(2021).

    [36] D. Zhang, Y. Wang, Y. Zhu, Z. Cui, G. Sun, X. Zhang, Z. Yao, X. Zhang, K. Zhang. Ultra-high Q resonances governed by quasi-bound states in the continuum in all-dielectric THz metamaterials. Opt. Commun., 520, 128555(2022).

    [37] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).

    [38] E. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. J. Fritz, G. McBrien, D. Bossi. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron., 6, 69-82(2000).

    [39] S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, N. Gisin. PPLN waveguide for quantum communication. Eur. Phys. J. D, 18, 155-160(2002).

    [40] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Loncar. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [41] L. Kang, H. Bao, D. H. Werner. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces. Opt. Lett., 46, 633-636(2021).

    [42] L. Hu, B. Wang, Y. Guo, S. Du, J. Chen, C. Gu, C. Gu, L. Wang. Quasi-BIC enhanced broadband terahertz generation in all-dielectric metasurface. Adv. Opt. Mater., 10, 2200193(2022).

    [43] K. H. Kim, I.-P. Kim. Efficient near UV-vacuum UV sources based on second-harmonic generation enhanced by high-Q quasi-BICs in all-dielectric metasurfaces of low-index materials. Photonics Nanostruct. Fundam. Appl., 51, 101053(2022).

    [44] B. Gao, M. Ren, W. Wu, W. Cai, J. Xu. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. Astron., 64, 240362(2021).

    [45] Y. Xu, L. Zhang, B. Du, H. S. Chen, Y. Hou, T. Li, J. Mao, Y. Zhang. Quasi-BIC based low-voltage phase modulation on lithium niobite metasurface. IEEE Photonics Technol. Lett., 34, 1077-1080(2022).

    [46] R. Kanyang, C. Fang, Q. Y. Yang, Y. Shao, G. Han, Y. Liu, Y. Hao. Electro-optical modulation in high Q metasurface enhanced with liquid crystal integration. Nanomaterials, 12, 3179(2022).

    [47] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, H. Altug. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [48] M. S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, J. Nine, A. Dinovitser, C. M. B. Cordeiro, B. W.-H. Ng, D. Abbott. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon, 158, 559-567(2020).

    [49] N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, L. Zhang. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express, 26, 11728-11736(2018).

    [50] X. Zheng, Z. Xiao, X. Ling. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 13, 287-291(2017).

    [51] H. Jiang, Z. Han. Numerical study of terahertz radiations from difference frequency generation with large spectral tunability and significantly enhanced conversion efficiencies boosted by 1D leaky modes. J. Phys. D, 55, 385106(2022).

    [52] S. Benchabane, L. Robert, J.-Y. Rauch, A. Khelif, V. Laude. Highly selective electroplated nickel mask for lithium niobate dry etching. J. Appl. Phys., 105, 094109(2009).

    [53] A. A. Osipov, S. Alexandrov, G. A. Iankevich. The effect of a lithium niobate heating on the etching rate in SF6 ICP plasma. Mater. Res. Express, 6, 046306(2019).

    [54] J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).

    [55] P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, K. A. Nelson. Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3. Appl. Phys. A, 112, 615-622(2013).

    [56] S. Han, P. Pitchappa, W. Wang, Y. K. Srivastava, M. V. Rybin, R. Singh. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces. Adv. Opt. Mater., 9, 2002001(2021).

    [57] S. You, M. Zhou, L. Xu, D. Chen, M. Fan, J. Huang, W. Ma, S. Luo, M. Rahmani, C. Zhou, A. E. Miroshnichenko, L. Huang. Quasi-bound states in the continuum with a stable resonance wavelength in dimer dielectric metasurfaces. Nanophotonics, 12, 2051-2060(2023).

    [58] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, Y. S. Kivshar. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [59] Y. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [60] K. Sun, H. Wei, W. Chen, Y. Chen, Y. Cai, C.-W. Qiu, Z. Han. Infinite-Q guided modes radiate in the continuum. Phys. Rev., 107, 115415(2023).

    [61] S. Li, K. B. Crozier. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev., 97, 245423(2018).

    [62] Z. Zhang, J. Yang, T. Du, H. Ma, X. Jiang. Tailoring bound states in the continuum in symmetric photonic crystal slabs by coupling strengths. Opt. Express, 30, 8049-8062(2022).

    [63] Y. He, G. Guo, T. Feng, Y. Xu, A. E. Miroshnichenko. Toroidal dipole bound states in the continuum. Phys. Rev., 98, 161112(2018).

    [64] K. Sun, Y. Cai, U. Levy, Z. Han. Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations. Beilstein J. Nanotechnol., 14, 322-328(2023).

    [65] L. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [66] S. Li, C. Zhou, T. Liu, S.-Y. Xiao. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Phys. Rev., 100, 063803(2019).

    [67] R. Berté, T. Weber, L. De S Menezes, L. Kühner, A. Aigner, M. Barkey, F. J. Wendisch, Y. S. Kivshar, A. Tittl, S. A. Maier. Permittivity-asymmetric quasi-bound states in the continuum. Nano Lett., 23, 2651-2658(2023).

    [68] Y. Liu, H. Li, J. Liu, S. K. Tan, Q. Lu, W. Guo. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express, 29, 6320-6329(2021).

    [69] J. Zhang, T. Lang, Z. Hong, J. Liu, P. Wang. Sensitive detection of aspartame and vanillin by combining terahertz fingerprinting with a metamaterial. IEEE Sens. J., 22, 16513-16521(2022).

    [70] T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, R. Singh. Active control of nanodielectric-induced THZ quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv. Mater., 33, 2100836(2021).

    [71] J. Li, Z. Yue, J. Li, C. Zheng, Y. Zhang, J. Yao. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum. Opt. Laser Technol., 161, 109173(2023).

    [72] W. Cen, T. Lang, Z. Hong, J. Liu, M. Xiao, J. Zhang, Z. Yu. Ultrasensitive flexible terahertz plasmonic metasurface sensor based on bound states in the continuum. IEEE Sens. J., 22, 12838-12845(2022).

    [73] R. Wang, L. Xu, J. Wang, L. Sun, Y. Jiao, Y. Meng, S. Chen, C.-H. Chang, C. Fan. Electric Fano resonance-based terahertz metasensors. Nanoscale, 13, 18467-18472(2021).

    [74] X. Chen, W. Fan, X. Jiang, H. Yan. High-Q toroidal dipole metasurfaces driven by bound states in the continuum for ultrasensitive terahertz sensing. J. Lightwave Technol., 40, 2181-2190(2021).

    [75] M. Janneh, V. Ferrari, E. Palange, A. T. Tenggara, D.-Y. Byun. Design of a metasurface-based dual-band Terahertz perfect absorber with very high Q-factors for sensing applications. Opt. Commun., 416, 152-159(2018).

    [76] Y. Zhong, D. Liang, Q. Liu, L. Zhu, K. Meng, Y. Zou, B. Zhang. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. RSC Adv., 10, 33018-33025(2020).

    [77] T. Ma, Q. Huang, H. He, Y. Zhao, X. N. Lin, Y. Lu. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range. Opt. Express, 27, 16624-16634(2019).

    [78] J. Wang, J. Kühne, T. D. Karamanos, C. Rockstuhl, S. A. Maier, A. Tittl. All-dielectric crescent metasurface sensor driven by bound states in the continuum. Adv. Funct. Mater., 31, 2104652(2021).

    Xinyao Yu, Fanghao Li, Tingting Lang, Jianyuan Qin, Xiao Ma, "Ultrasensitive tunable terahertz lithium niobate metasurface sensing based on bound states in the continuum," Photonics Res. 11, 2168 (2023)
    Download Citation