[1] 1徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4): 916-931. doi: 10.37188/OPE.2020.0419XUF, LIUJ H, SUNH, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4): 916-931. (in Chinese). doi: 10.37188/OPE.2020.0419
[2] Z Q WANG, Y ZHOU, F T WANG et al. SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression. Remote Sensing, 13, 499(2021).
[3] H N QIN, Y S LI, J LEI et al. A specially optimized one-stage network for object detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 18, 401-405(2021).
[4] L JIN, G D LIU. An approach on image processing of deep learning based on improved SSD. Symmetry, 13, 495(2021).
[5] H LI, L B DENG, C YANG et al. Enhanced YOLO v3 tiny network for real-time ship detection from visual image. IEEE Access, 9, 16692-16706(2021).
[6] X Y XIE, B LI, X X WEI. Ship detection in multispectral satellite images under complex environment. Remote Sensing, 12, 792(2020).
[7] T Y LIN, M MAIRE, S BELONGIE et al.
[8] M EVERINGHAM, S M ESLAMI, L GOOL et al. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 111, 98-136(2015).
[9] G S XIA, X BAI, J DING et al. DOTA: a large-scale dataset for object detection in aerial images, 3974-3983(2018).
[10] G CHENG, J W HAN, P C ZHOU et al. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Transactions on Image Processing, 28, 265-278(2019).
[11] K LI, G WAN, G CHENG et al. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).
[12] Z K LIU, L YUAN, L B WENG et al. A high resolution optical satellite image dataset for ship recognition and some new baselines, 24, 324-331(2017).
[14] K RAINEY, J STASTNY. Object recognition in ocean imagery using feature selection and compressive sensing, 1-6(2012).
[15] Z N ZHANG, L ZHANG, Y WANG et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8458-8472(2021).
[16] Z X ZOU, Z W SHI. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Transactions on Image Processing, 27, 1100-1111(2018).
[17] G CHENG, J W HAN, X Q LU. Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 105, 1865-1883(2017).
[18] G CHENG, X X XIE, J W HAN et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735-3756(2020).
[21] A J GALLEGO, A PERTUSA, P GIL. Automatic ship classification from optical aerial images with convolutional neural networks. Remote Sensing, 10, 511(2018).
[22] 22姚力波, 张筱晗, 吕亚飞, 等. FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集[J]. 中国图象图形学报, 2021, 26(10): 2337-2345.YAOL B, ZHANGX H, LYUY F, et al. FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition[J]. Journal of Image and Graphics, 2021, 26(10): 2337-2345. (in Chinese)
[23] W LIU, D ANGUELOV, D ERHAN et al.
[24] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).
[25] T KONG, F C SUN, H P LIU et al. FoveaBox: beyound anchor-based object detection. IEEE Transactions on Image Processing, 29, 7389-7398(2020).
[26] Z TIAN, C H SHEN, H CHEN et al. FCOS: fully convolutional one-stage object detection, 9626-9635.
[27] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[28] Z W CAI, N VASCONCELOS. Cascade R-CNN: delving into high quality object detection, 6154-6162(2018).