• Optics and Precision Engineering
  • Vol. 31, Issue 13, 1962 (2023)
Li CHEN1,2,3, Linhan LI1,2,3, Shiyong WANG1,3,*, Sili GAO1,3,*, and Xiangzhou YE1,2,3
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences,Shanghai20008, China
  • show less
    DOI: 10.37188/OPE.20233113.1962 Cite this Article
    Li CHEN, Linhan LI, Shiyong WANG, Sili GAO, Xiangzhou YE. MMShip: medium resolution multispectral satellite imagery ship dataset[J]. Optics and Precision Engineering, 2023, 31(13): 1962 Copy Citation Text show less
    References

    [1] 1徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4): 916-931. doi: 10.37188/OPE.2020.0419XUF, LIUJ H, SUNH, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4): 916-931. (in Chinese). doi: 10.37188/OPE.2020.0419

    [2] Z Q WANG, Y ZHOU, F T WANG et al. SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression. Remote Sensing, 13, 499(2021).

    [3] H N QIN, Y S LI, J LEI et al. A specially optimized one-stage network for object detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 18, 401-405(2021).

    [4] L JIN, G D LIU. An approach on image processing of deep learning based on improved SSD. Symmetry, 13, 495(2021).

    [5] H LI, L B DENG, C YANG et al. Enhanced YOLO v3 tiny network for real-time ship detection from visual image. IEEE Access, 9, 16692-16706(2021).

    [6] X Y XIE, B LI, X X WEI. Ship detection in multispectral satellite images under complex environment. Remote Sensing, 12, 792(2020).

    [7] T Y LIN, M MAIRE, S BELONGIE et al. Microsoft COCO Common Objects in Context. Computer Vision-ECCV 2014, 740-755(2014).

    [8] M EVERINGHAM, S M ESLAMI, L GOOL et al. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 111, 98-136(2015).

    [9] G S XIA, X BAI, J DING et al. DOTA: a large-scale dataset for object detection in aerial images, 3974-3983(2018).

    [10] G CHENG, J W HAN, P C ZHOU et al. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Transactions on Image Processing, 28, 265-278(2019).

    [11] K LI, G WAN, G CHENG et al. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [12] Z K LIU, L YUAN, L B WENG et al. A high resolution optical satellite image dataset for ship recognition and some new baselines, 24, 324-331(2017).

    [13] K CHEN, M WU, J LIU et al. FGSD A Dataset for Fine-grained Ship Detection in High Resolution Satellite Images. arXiv, 2003-06832(2020). https://arxiv.org/abs/2003.06832

    [14] K RAINEY, J STASTNY. Object recognition in ocean imagery using feature selection and compressive sensing, 1-6(2012).

    [15] Z N ZHANG, L ZHANG, Y WANG et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8458-8472(2021).

    [16] Z X ZOU, Z W SHI. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Transactions on Image Processing, 27, 1100-1111(2018).

    [17] G CHENG, J W HAN, X Q LU. Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 105, 1865-1883(2017).

    [18] G CHENG, X X XIE, J W HAN et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735-3756(2020).

    [19] D LAM, R KUZMA, K MCGEE et al. xView Objects in Context in Overhead Imagery. arXiv, 1802-07856(2018). https://arxiv.org/abs/1802.07856

    [20] Airbus. Airbus Ship Detection Challenge, 2018. Accessed: Dec, 2020(1). https://www.kaggle.com/c/airbus-ship-detection/data

    [21] A J GALLEGO, A PERTUSA, P GIL. Automatic ship classification from optical aerial images with convolutional neural networks. Remote Sensing, 10, 511(2018).

    [22] 22姚力波, 张筱晗, 吕亚飞, 等. FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集[J]. 中国图象图形学报, 2021, 26(10): 2337-2345.YAOL B, ZHANGX H, LYUY F, et al. FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition[J]. Journal of Image and Graphics, 2021, 26(10): 2337-2345. (in Chinese)

    [23] W LIU, D ANGUELOV, D ERHAN et al. SSD Single Shot MultiBox Detector. Computer Vision-ECCV 2016, 21-37(2016).

    [24] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).

    [25] T KONG, F C SUN, H P LIU et al. FoveaBox: beyound anchor-based object detection. IEEE Transactions on Image Processing, 29, 7389-7398(2020).

    [26] Z TIAN, C H SHEN, H CHEN et al. FCOS: fully convolutional one-stage object detection, 9626-9635.

    [27] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [28] Z W CAI, N VASCONCELOS. Cascade R-CNN: delving into high quality object detection, 6154-6162(2018).

    [29] K CHEN, J WANG, J PANG et al. MMDetection open MMLab detection toolbox and benchmark. arXiv, 1906-07155(2019). https://arxiv.org/abs/1906.07155

    Li CHEN, Linhan LI, Shiyong WANG, Sili GAO, Xiangzhou YE. MMShip: medium resolution multispectral satellite imagery ship dataset[J]. Optics and Precision Engineering, 2023, 31(13): 1962
    Download Citation