• Matter and Radiation at Extremes
  • Vol. 1, Issue 5, 264 (2016)
Andrey V. Kozyrev1、*, Vasily Yu. Kozhevnikov1、2, and Natalia S. Semeniuk1、2
Author Affiliations
  • 1National Research Tomsk State University, Tomsk 634050, Russia
  • 2Institute of High Current Electronics, Russian Academy of Sciences, SB, Tomsk 634055, Russia
  • show less
    DOI: 10.1016/j.mre.2016.10.001 Cite this Article
    Andrey V. Kozyrev, Vasily Yu. Kozhevnikov, Natalia S. Semeniuk. Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure[J]. Matter and Radiation at Extremes, 2016, 1(5): 264 Copy Citation Text show less
    References

    [1] T. Shao, V.F. Tarasenko, C. Zhang, E. Kh. Baksht, P. Yan, et al., Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation, Laser Part. Beams 30 (2012) 369-378.

    [2] G.A. Mesyats, M.I. Yalandin, A.G. Reutova, K.A. Sharypov, V.G. Shpak, et al., Picoseconds' beams of runaway electrons in air, Plasma Phys. Rep. 38 (2012) 29-45.

    [3] O. Chanrion, T. Neubert, Production of runaway electrons by negative streamer discharges, J. Geophys. Res. 115 (2010) A00E32.

    [4] V. Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge, Europhys. Lett. 112 (1) (2015) 15001.

    [5] V. Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, Zero-dimensional theoretical model of subnanosecond high-pressure gas discharge, IEEE Trans. Plasma Sci. 43 (2015) 4077-4080.

    [6] D. Levko, V. Tz. Gurovich, Ya. E. Krasik, Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations, J. Appl. Phys. 111 (2012) 123303.

    [7] D. Levko, Ya. E. Krasik, Numerical simulation of runaway electrons generation in sulfur hexafluoride, J. Appl. Phys. 111 (2012) 013305.

    [8] S.K. Dhali, A.K. Pal, Numerical simulation of streamers in SF6, J. Appl. Phys. 63 (5) (1988) 1355-1362.

    [9] W.E. Schiesser, A Compendium of Partial Differential Equation Models. Method of Lines Analysis with Matlab, Cambridge University Press, New York, 2009.

    [10] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1) (1994) 200-212.

    [11] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Longman Scientific & Technical, New York, 1995.

    [12] L.G. Christophorou, J.K. Olthoff, Electron interactions with SF6, J. Phys. Chem. Ref. Data 29 (2000) 267-330.

    [13] T. Xiong, J.-M. Qiu, Z. Xu, A. Christlieb, High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation, J. Comput. Phys. 273 (2014) 618-639.

    [14] T. Tabata, R. Ito, A generalized empirical equation for the transmission coefficient of electrons, Nucl. Instrum. Meth. 127 (1975) 429-434.

    [15] L.P. Babich, T.V. Loiko, V.A. Tsukerman, High-voltage nanosecond discharge in a dense gas at high overvoltage with runaway electrons, Sov. Phys. Usp. 33 (1990) 521-539.

    [16] G.A. Askar'yan, Acceleration of particles by edge electric field of moving plasma tip, JETP Lett. 1 (1965) 44 translation 1 (1965) 97.

    [17] A.V. Kozyrev, V.Yu. Kozhevnikov, M.I. Lomaev, D.A. Sorokin, N.S. Semeniuk, et al., Theoretical simulation of the picosecond runaway electron beam in coaxial diode filled with SF6 at atmospheric pressure, Europhys. Lett. 114 (4) (2016) 45001.

    Andrey V. Kozyrev, Vasily Yu. Kozhevnikov, Natalia S. Semeniuk. Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure[J]. Matter and Radiation at Extremes, 2016, 1(5): 264
    Download Citation