• High Power Laser Science and Engineering
  • Vol. 8, Issue 2, 02000e13 (2020)
Victor Hariton1、*, Celso Paiva Jo?o1, Hugo Pires1, Mario Galletti2, and Gon?alo Figueira1
Author Affiliations
  • 1GoLP/Instituto de Plasmas e Fus?o Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,1049-001Lisbon, Portugal
  • 2GoLP/Instituto de Plasmas e Fus?o Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,1049-001Lisbon, Portugal
  • show less
    DOI: 10.1017/hpl.2020.11 Cite this Article Set citation alerts
    Victor Hariton, Celso Paiva Jo?o, Hugo Pires, Mario Galletti, Gon?alo Figueira. Thermal lens analysis in a diode-pumped 10 Hz 100 mJ Yb:YAG amplifier[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e13 Copy Citation Text show less

    Abstract

    We address the power scaling issue in end-pumped laser rod amplifiers by studying, experimentally and numerically, the magnitude of thermal lensing in a high-energy diode-pumped Yb:YAG crystal. The spatio-temporal temperature profile of the gain medium and the focal length of the induced thermal lens are determined numerically. The influence of the repetition rate and pumping power on the temperature distribution is analyzed. Experimental measurements covered repetition rates between 1 and 10 Hz and up to 4 kW pumping power.
    $$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D70C}C_{p}\frac{\unicode[STIX]{x2202}T}{\unicode[STIX]{x2202}t}-\unicode[STIX]{x1D6FB}[K_{c}(T)\unicode[STIX]{x1D6FB}T]=S, & & \displaystyle\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}\displaystyle & & \displaystyle \frac{\unicode[STIX]{x2202}T(r,z,t)}{\unicode[STIX]{x2202}t}=k_{a}\left[\frac{\text{d}^{2}T(r,z,t)}{\text{d}z^{2}}\right]\nonumber\\ \displaystyle & & \displaystyle \quad +\,k_{a}\left[\frac{1}{r}\frac{\text{d}T(r,z,t)}{\text{d}r}+\frac{\text{d}^{2}T(r,z,t)}{\text{d}r^{2}}\right]+S(r,z,t)\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}S(r,z,t)=\frac{\unicode[STIX]{x1D702}_{s}P(t)}{w_{p}^{2}\unicode[STIX]{x1D70B}}e^{-1/2(r^{2}/w_{p}^{2})^{4}}\unicode[STIX]{x1D6FE}e^{-\unicode[STIX]{x1D6FE}z},\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}\left.-K_{c}\frac{\unicode[STIX]{x2202}T}{\unicode[STIX]{x2202}r}\right|_{r=r_{0}}=h_{w}[T(r_{0},z)-T_{c}].\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}\displaystyle \unicode[STIX]{x0394}\text{OPD}(r) & = & \displaystyle \left[\frac{\text{d}n}{\text{d}T}+(n-1)(1+\unicode[STIX]{x1D708})\unicode[STIX]{x1D6FC}_{T}\right]\nonumber\\ \displaystyle & & \displaystyle \times \int _{0}^{l}[T_{\infty }(r=0,z)-T_{\infty }(r,z)]\,\text{d}z.\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}R=\frac{r_{p}^{2}}{4\unicode[STIX]{x1D706}Z_{3}},\end{eqnarray}$$(6)

    View in Article

    Victor Hariton, Celso Paiva Jo?o, Hugo Pires, Mario Galletti, Gon?alo Figueira. Thermal lens analysis in a diode-pumped 10 Hz 100 mJ Yb:YAG amplifier[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e13
    Download Citation