[1] NAIR A K, GAUTIERI A, CHANG S W, et al. Molecular mechanics of mineralized collagen fibrils in bone[J]. Nat Commun, 2013, 4: 1724.
[2] WEINER S, TRAUB W, WAGNER H D. Lamellar bone: Structure-function relations[J]. J Struct Biol, 1999, 126(3): 241-255.
[3] REZWAN K, CHEN Q Z, BLAKER J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(18): 3413-3431.
[4] TANG Z R, LI X F, TAN Y F, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics[J]. Regen Biomater, 2018, 5(1): 43-59.
[5] KOIZUMI D, SUZUKI K, TOGAWA R, et al. Preparation of antimicrobial calcium phosphate/protamine composite powders with fluoride ions using octacalcium phosphate[J]. J Mater Sci Mater Med, 2022, 33(4): 35.
[6] GAO C D, PENG S P, FENG P, et al. Bone biomaterials and interactions with stem cells[J]. Bone Res, 2017, 5: 17059.
[7] SHADJOU N, HASANZADEH M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55: 401-409.
[8] ZHAO C Q, LIU W Y, ZHU M, et al. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review[J]. Bioact Mater, 2022, 18: 383-398.
[9] DOROZHKIN S V. Calcium orthophosphate bioceramics[J]. Ceram Int, 2015, 41(10): 13913-13966.
[10] USKOKOVIC V. Ion-doped hydroxyapatite: An impasse or the road to follow?[J]. Ceram Int, 2020, 46(8): 11443-11465.
[11] SAGHIRI M A, VAKHNOVETSKY J, VAKHNOVETSKY A, et al. Functional role of inorganic trace elements in dentin apatite tissue-part III: Se, F, Ag, and B[J]. J Trace Elem Med Biol, 2022, 72: 126990.
[12] YILMAZ B, ALSHEMARY A Z, EVIS Z. Co-doped hydroxyapatites as potential materials for biomedical applications[J]. Microchem J, 2019, 144: 443-453.
[13] JIANG Y, YUAN Z Y, HUANG J E. Substituted hydroxyapatite: A recent development[J]. Mater Technol, 2020, 35(11-12): 785-796.
[15] UIIAH I, CAO L, CUI W, et al. Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles[J]. J Mater Sci Technol, 2021, 88: 99-108.
[16] FRASNELLI M, PEDRANZ A, BIESUZ M, et al. Flash sintering of Mg-doped tricalcium phosphate (TCP) nanopowders[J]. J Eur Ceram Soc, 2019, 39(13): 3883-3892.
[17] LEE D, KUMTA P N. Chemical synthesis and characterization of magnesium substituted amorphous calcium phosphate (MG-ACP)[J]. Mater Sci Eng C, 2010, 30(8): 1313-1317.
[18] JIN W J, LIU Z M, WU Y Y, et al. Synergic effect of Sr2+ and Mg2+ on the stabilization of amorphous calcium phosphate[J]. Cryst Growth Des, 2018, 18(10): 6054-6060.
[19] SUGIURA Y, MAKITA Y. Ammonium substitutional solid solution of octacalcium phosphate (OCP)[J]. Chem Lett, 2018, 47(11): 1371-1374.
[20] ELRAYAH A, ZHI W, FENG S, et al. Preparation of micro/nano-structure copper-substituted hydroxyapatite scaffolds with improved angiogenesis capacity for bone regeneration[J]. Materials, 2018, 11(9): 1516.
[21] ANDRS N C, SIEBEN J M, BALDINI M, et al. Electroactive Mg2+-hydroxyapatite nanostructured networks against drug-resistant bone infection strains[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19534-19544.
[22] MAGUIRE M E, COWAN J A. Magnesium chemistry and biochemistry[J]. Biometals, 2002, 15(3): 203-210.
[23] WANG J L, XU J K, HOPKINS C, et al. Biodegradable magnesium-based implants in orthopedics-A general review and perspectives[J]. Adv Sci, 2020, 7(8): 1902443.
[24] YU Y Q, JIN G D, XUE Y, et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants[J]. Acta Biomater, 2017, 49: 590-603.
[25] SOPYAN I, RAHIM T A. Porous magnesium-doped biphasic calcium phosphate ceramics prepared via polymeric sponge method[J]. Mater Manuf Process, 2012, 27(6): 702-706.
[26] ZHAO X N, YANG Z, LIU Q Y, et al. Potential load-bearing bone substitution material: Carbon-fiber-reinforced magnesium-doped hydroxyapatite composites with excellent mechanical performance and tailored biological properties[J]. ACS Biomater Sci Eng, 2022, 8(2): 921-938.
[27] GOLDBERG M A, SMIRNOV V V, KROKHICHEVA P A, et al. The creation and application outlook of calcium phosphate and magnesium phosphate bone cements with antimicrobial properties (review)[J]. Inorg Mater Appl Res, 2021, 12(1): 195-203.
[28] YAN M Q, ZHAO Y N, DAI Y, et al. Modified calcium magnesium phosphate bone cement with improved microenvironment[J]. Ceram Int, 2022, 48(22): 32929-32936.
[29] WU F, WEI J, GUO H, et al. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration[J]. Acta Biomater, 2008, 4(6): 1873-1884.
[30] WANG M, YU Y M, DAI K, et al. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation[J]. Biomater Sci, 2016, 4(11): 1574-1583.
[31] DING H C, PAN H H, XU X R, et al. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition[J]. Cryst Growth Des, 2014, 14(2): 763-769.
[32] SARMA B K, SARMA B. Role of magnesium on the biomimetic deposition of calcium phosphate[J]. J Phys: Conf Ser, 2016, 765: 012025.
[34] HUSSAIN A, JIANG W T, WANG X K, et al. Mechanistic impact of zinc deficiency in human development[J]. Front Nutr, 2022, 9: 717064.
[35] PREDOI D, ICONARU S L, PREDOI M V, et al. Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds[J]. Nanomaterials, 2019, 9(4): 515.
[36] O’NEILL E, AWALE G, DANESHMANDI L, et al. The roles of ions on bone regeneration[J]. Drug Discov Today, 2018, 23(4): 879-890.
[37] MARDZIAH C M, RAMESH S, ABDUL WAHID M F, et al. Effect of zinc ions on the structural characteristics of hydroxyapatite bioceramics[J]. Ceram Int, 2020, 46(9): 13945-13952.
[39] DE LIMA C O, DE OLIVEIRA A L M, CHANTELLE L, et al. Zn-doped mesoporous hydroxyapatites and their antimicrobial properties[J]. Colloids Surf B Biointerfaces, 2021, 198: 111471.
[40] SANTOS M H, HENEINE L G D, MANSUR H S. Synthesis and characterization of calcium phosphate/collagen biocomposites doped with Zn2+[J]. Mater Sci Eng C, 2008, 28(4): 563-571.
[42] WEBSTER T J, MASSA-SCHLUETER E A, SMITH J L, et al. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations[J]. Biomaterials, 2004, 25(11): 2111-2121.
[43] LIN K L, LIU P Y, WEI L, et al. Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release[J]. Chem Eng J, 2013, 222: 49-59.
[44] LIU J, RAWLINSON S C F, HILL R G, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects[J]. Dent Mater, 2016, 32(3): 412-422.
[45] BIZELLI-SILVEIRA C, PULLISAAR H, ABILDTRUP L A, et al. Strontium enhances proliferation and osteogenic behavior of periodontal ligament cells in vitro[J]. J Periodontal Res, 2018, 53(6): 1020-1028.
[46] BONNELYE E, CHABADEL A, SALTEL F, et al. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J]. Bone, 2008, 42(1): 129-138.
[47] YU W L, SUN T W, QI C, et al. Strontium-doped amorphous calcium phosphate porous microspheres synthesized through a microwave-hydrothermal method using fructose 1,6-bisphosphate as an organic phosphorus source: Application in drug delivery and enhanced bone regeneration[J]. ACS Appl Mater Interfaces, 2017, 9(4): 3306-3317.
[48] DENG Y L, LIU M J, CHEN X N, et al. Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite[J]. J Mater Chem B, 2018, 6(41): 6572-6584.
[49] GENG Z, JI L L, LI Z Y, et al. Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis[J]. Bioact Mater, 2021, 6(4): 905-915.
[50] CHI W C, ZOU J W, AI F R, et al. Research of Cu-doped hydroxyapatite microbeads fabricated by pneumatic extrusion printing[J]. Materials, 2019, 12(11): 1769.
[51] SAGHIRI M A, VAKHNOVETSKY J, VAKHNOVETSKY A. Functional role of inorganic trace elements in dentin apatite-Part II: Copper, manganese, silicon, and lithium[J]. J Trace Elem Med Biol, 2022, 72: 126995.
[52] SHEN Q D, QI Y S, KONG Y Z, et al. Advances in copper-based biomaterials with antibacterial and osteogenic properties for bone tissue engineering[J]. Front Bioeng Biotechnol, 2022, 9: 795425.
[53] YU L, JIN G D, OUYANG L P, et al. Antibacterial activity, osteogenic and angiogenic behaviors of copper-bearing titanium synthesized by PIII&D[J]. J Mater Chem B, 2016, 4(7): 1296-1309.
[54] ESPRITO SANTO C, LAM E W, ELOWSKY C G, et al. Bacterial killing by dry metallic copper surfaces[J]. Appl Environ Microbiol, 2011, 77(3): 794-802.
[55] LI Y, HO J, OOI C P. Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles[J]. Mater Sci Eng C, 2010, 30(8): 1137-1144.
[58] KOYAMA S, HAMAI R, SHIWAKU Y, et al. Angio-osteogenic capacity of octacalcium phosphate co-precipitated with copper gluconate in rat calvaria critical-sized defect[J]. Sci Technol Adv Mater, 2022, 23(1): 120-139.
[59] YU Y L, LIN C C, WU M, et al. Fabrication of copper ions-substituted hydroxyapatite coating on titanium substrates for antibacterial and osteogenic applications[J]. Mater Lett, 2022, 307: 131072.
[60] BELLANTONE M, WILLIAMS H D, HENCH L L. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass[J]. Antimicrob Agents Chemother, 2002, 46(6): 1940-1945.
[61] LANSDOWN A B G. Silver. I: Its antibacterial properties and mechanism of action[J]. J Wound Care, 2002, 11(4): 125-130.
[62] PRUCEK R, TUCEK J, KILIANOVA M, et al. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles[J]. Biomaterials, 2011, 32(21): 4704-4713.
[63] SAGHIRI M A, VAKHNOVETSKY J, VAKHNOVETSKY A, et al. Functional role of inorganic trace elements in dentin apatite tissue-Part 1: Mg, Sr, Zn, and Fe[J]. J Trace Elem Med Biol, 2022, 71: 126932.
[65] GOKCEKAYA O, UEDA K, NARUSHIMA T, et al. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios[J]. Mater Sci Eng C, 2015, 53: 111-119.
[66] PATERSON T E, SHI R, TIAN J J, et al. Electrospun scaffolds containing silver-doped hydroxyapatite with antimicrobial properties for applications in orthopedic and dental bone surgery[J]. J Funct Biomater, 2020, 11(3): 58.
[68] FU C, ZHANG X F, SAVINO K, et al. Antimicrobial silver- hydroxyapatite composite coatings through two-stage electrochemical synthesis[J]. Surf Coat Technol, 2016, 301: 13-19.
[69] LIM P N, CHANG L, THIAN E S. Development of nanosized silver-substituted apatite for biomedical applications: A review[J]. Nanomed Nanotechnol Biol Med, 2015, 11(6): 1331-1344.
[71] WU C T, ZHOU Y H, FAN W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering[J]. Biomaterials, 2012, 33(7): 2076-2085.
[72] CZARNEK K, TERPIOWSKA S, SIWICKI A K. Selected aspects of the action of cobalt ions in the human body[J]. Cent Eur J Immunol, 2015, 40(2): 236-242.
[73] DENG Z W, LIN B C, JIANG Z H, et al. Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration[J]. Int J Biol Sci, 2019, 15(6): 1113-1124.
[76] KAHAIE KHOSROWSHAHI A, KHOSHFETRAT A B, KHOSROWSHAHI Y B, et al. Cobalt content modulates characteristics and osteogenic properties of cobalt-containing hydroxyapatite in in-vitro milieu[J]. Mater Today Commun, 2021, 27: 102392.
[78] AASETH J, BOIVIN G, ANDERSEN O. Osteoporosis and trace elements-An overview[J]. J Trace Elem Med Biol, 2012, 26(2-3): 149-152.
[81] SOPYAN I, RAMESH S, NAWAWI N A, et al. Effects of manganese doping on properties of sol-gel derived biphasic calcium phosphate ceramics[J]. Ceram Int, 2011, 37(8): 3703-3715.
[82] WU T T, SHI H S, LIANG Y Y, et al. Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110481.
[83] LEONE F A, CIANCAGLINI P, PIZAURO J M, et al. Rat osseous plate alkaline phosphatase: Mechanism of action of manganese ions[J]. Biometals, 1995, 8(1): 86-91.
[84] GAO J J, FENG L, CHEN B L, et al. The role of rare earth elements in bone tissue engineering scaffolds-A review[J]. Compos Part B Eng, 2022, 235: 109758.
[85] HUANG Y K, ZHAI X Y, MA T F, et al. Rare earth-based materials for bone regeneration: Breakthroughs and advantages[J]. Coord Chem Rev, 2022, 450: 214236.
[86] YIN J H, YU J Q, KE Q F, et al. La-Doped biomimetic scaffolds facilitate bone remodelling by synchronizing osteointegration and phagocytic activity of macrophages[J]. J Mater Chem B, 2019, 7(19): 3066-3074.
[87] LI X Y, ZOU Q, LI W, et al. Intracellular interaction of hydroxyapatite-based nanocrystals with uniform shape and traceable fluorescence[J]. Inorg Chem, 2018, 57(21): 13739-13748.
[88] VIEIRA E, SILVA M, MAIA-FILHO A, et al. Effect of cerium-containing hydroxyapatite in bone repair in female rats with osteoporosis induced by ovariectomy[J]. Minerals, 2021, 11(4): 377.
[89] ZHANG K L, ZHANG B P, HUANG C J, et al. Biocompatibility and antibacterial properties of pure titanium surfaces coated with yttrium-doped hydroxyapatite[J]. J Mech Behav Biomed Mater, 2019, 100: 103363.
[90] ROMAN M, JITARU P, BARBANTE C. Selenium biochemistry and its role for human health[J]. Metallomics, 2014, 6(1): 25-54.
[91] HARIHARAN S, DHARMARAJ S. Selenium and selenoproteins: It’s role in regulation of inflammation[J]. Inflammopharmacology, 2020, 28(3): 667-695.
[92] HE L, LI H Y, CHEN X Y, et al. Selenium-substituted hydroxyapatite particles with regulated microstructures for osteogenic differentiation and anti-tumor effects[J]. Ceram Int, 2019, 45(11): 13787-13798.
[93] LI Y, HAO H, ZHONG Z Y, et al. Assembly mechanism of highly crystalline selenium-doped hydroxyapatite nanorods via particle attachment and their effect on the fate of stem cells[J]. ACS Biomater Sci Eng, 2019, 5(12): 6703-6714.
[94] FERNANDES A P, GANDIN V. Selenium compounds as therapeutic agents in cancer[J]. Biochim Biophys Acta Gen Subj, 2015, 1850(8): 1642-1660.
[95] ZAKHIREH S, ADIBKIA K, BEYGI-KHOSROWSHAHI Y, et al. Osteogenesis promotion of selenium-doped hydroxyapatite for application as bone scaffold[J]. Biol Trace Elem Res, 2021, 199(5): 1802-1811.
[96] RODRGUEZ-VALENCIA C, FREIXEIRO P, SERRA J, et al. In vitro evaluation of the antibacterial and osteogenic activity promoted by selenium-doped calcium phosphate coatings[J]. Biomed Mater, 2017, 12(1): 015028.
[97] CARLISLE E M. Silicon: a possible factor in bone calcification[J]. Science, 1970, 167(3916): 279-280.
[99] JOKIC B, MITRIC M, POPOVIC M, et al. The influence of silicon substitution on the properties of spherical- and whisker-like biphasic α-calcium-phosphate/hydroxyapatite particles[J]. J Mater Sci Mater Med, 2011, 22(10): 2175-2185.
[100] KONG Y H, ZHANG X, MA X N, et al. Silicon-substituted calcium phosphate promotes osteogenic-angiogenic coupling by activating the TLR4/PI3K/AKT signaling axis[J]. J Biomater Appl, 2022, 37(3): 459-473.
[101] WU T T, LU T L, SHI H S, et al. Enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis of a calcium phosphate cement incorporated with strontium doped calcium silicate bioceramic[J]. Ceram Int, 2023, 49(4): 6630-6645.
[102] HARRISON J, MELVILLE A J, FORSYTHE J S, et al. Sintered hydroxyfluorapatites: IV: the effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells[J]. Biomaterials, 2004, 25(20): 4977-4986.
[103] TWETMAN S, AXELSSON S, DAHLGREN H, et al. Caries- preventive effect of fluoride toothpaste: A systematic review[J]. Acta Odontol Scand, 2003, 61(6): 347-355.
[104] EVERETT E T. Fluoride’s effects on the formation of teeth and bones, and the influence of genetics[J]. J Dent Res, 2011, 90(5): 552-560.
[105] NASKER P, MUKHERJEE M, KANT S, et al. Fluorine substituted nano hydroxyapatite: Synthesis, bio-activity and antibacterial response study[J]. Ceram Int, 2018, 44(17): 22008-22013.
[106] WANG L P, WANG M, LI M, et al. Trace fluorine substituted calcium deficient hydroxyapatite with excellent osteoblastic activity and antibacterial ability[J]. CrystEngComm, 2018, 20(38): 5744-5753.
[107] LIU S B, ZHOU H, LIU H H, et al. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo[J]. Cell Prolif, 2019, 52(3): e12613.
[108] CHEN R, WANG J, LIU C S. Biomaterials act as enhancers of growth factors in bone regeneration[J]. Adv Funct Mater, 2016, 26(48): 8810-8823.
[109] ALIOUI H, BOURAS O, BOLLINGER J C. Toward an efficient antibacterial agent: Zn- and Mg-doped hydroxyapatite nanopowders[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2019, 54(4): 315-327.
[110] SHAHMOHAMMADI P, KHAZAEI B A. Characterization of Zn/Mg-enriched calcium phosphate coating produced by the two-step pulsed electrodeposition method on titanium substrate[J]. Surf Interfaces, 2021, 22: 100819.
[111] SCALERA F, PALAZZO B, BARCA A, et al. Sintering of magnesium-strontium doped hydroxyapatite nanocrystals: Towards the production of 3D biomimetic bone scaffolds[J]. J Biomed Mater Res A, 2020, 108(3): 633-644.
[112] WANG J Y, LIU Y C, LIN G S, et al. Flame-sprayed strontium- and magnesium-doped hydroxyapatite on titanium implants for osseointegration enhancement[J]. Surf Coat Technol, 2020, 386: 125452.
[113] LOWRY N, HAN Y, MEENAN B J, et al. Strontium and zinc co-substituted nanophase hydroxyapatite[J]. Ceram Int, 2017, 43(15): 12070-12078.
[115] GUO C, NIU Y. Duplex modification of hydroxyapatite using co-substitution and dual deposition[J]. Mater Lett, 2021, 304: 130554.
[116] KULANTHAIVEL S, MISHRA U, AGARWAL T, et al. Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion[J]. Ceram Int, 2015, 41(9): 11323-11333.
[117] MAQBOOL M, NAWAZ Q, ATIQ UR REHMAN M, et al. Synthesis, characterization, antibacterial properties, and in vitro studies of selenium and strontium co-substituted hydroxyapatite[J]. Int J Mol Sci, 2021, 22(8): 4246.
[118] SINGH G, SINGH R P. Multifunctional strontium-sulphate co-substituted hydroxyapatite nanopowders[J]. J Drug Deliv Sci Technol, 2021, 65: 102755.
[119] CHEN P, WANG F, QIAO Y P, et al. Luminescence of samarium doped hydroxyapatite containing strontium: Effects of doping concentration[J]. J Rare Earths, 2022, 40(3): 398-405.
[120] MOREIRA M P, DE ALMEIDA SOARES G D, DENTZER J, et al. Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium[J]. Mater Sci Eng C, 2016, 61: 736-743.
[121] GOPI D, NITHIYA S, SHINYJOY E, et al. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2012, 92: 194-200.
[123] RAJENDRAN A, BALAKRISHNAN S, KULANDAIVELU R, et al. Multi-element substituted hydroxyapatites: Synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity[J]. J Sol Gel Sci Technol, 2018, 86(2): 441-458.